摘要
利用支持向量机(SVM)-Logistic回归的混合两阶段模型来对上市公司信用风险进行评价。通过Logistic回归分析来对SVM的输出结果进行修正,降低了传统SVM方法的经验风险,提高了分类准确率。对SVM-Logistic回归模型、SVM和神经网络-Logistic回归模型进行实证比较,结果表明,支持向量机-Logistic回归模型的总判别准确率高于其他判别模型。
This paper uses the Support Vector Machine (SVM) and Logistic Regression for cnrpnrate financial risk evaluation. This can decrease the empirical risk of SVM outputs by interpreting and modifying the outputs of the SVM classifiers according to the result of Logistic Regression analysis so that it improves the accuracy of classifier rate. Compared with the models of SVM and NN - Logistic , the result shows that tire integrated binary discriminaut rule provcs marc accurate classifier rate than that of other models.
出处
《商业研究》
CSSCI
北大核心
2008年第4期106-108,共3页
Commercial Research
基金
北京市教委优秀人才培养专项经费资助
项目编号:SM200710005001
北京工业大学博士科研启动基金资助