期刊文献+

基于蒙特卡罗模拟法的可转换债券VaR测度 被引量:1

The Measure of Value at Risk of Convertible Bonds Based on Monte Carlo Simulation
下载PDF
导出
摘要 可转换债券是兼具债权和期权的复合衍生金融工具,其价值包括普通债券价值和转股期权价值。由于目前我国的利率未市场化,纯粹债券价值保持稳定,可转换债券价值的波动仅取决于期权价值的波动,而短期内期权价格的变动主要受股票价格的影响。文章首先采用一般的蒙特卡罗模拟法计算出可转债对应股票的VaR,然后与基于t分布和TARCH(1,1)-M模型的蒙特卡罗模拟法相比较,发现后者的股票VaR模型是合理的;最后根据金融随机过程,计算出转股期权的VaR,进而推算出可转换债券的VaR。 Convertible bond is a complex derivative financial tool which has the characteristics of both creditors and options. Its value covers the ordinary bonds value and the convertible bonds options value. In China, the market-oriented interest rate reform is not finished, therefore the value of ordinary bonds keeps stable and the fluctuation in the value of the convertible bonds only depends on the fluctuation in the value of options. Moreover, the option price short-term movements are mainly influenced by the stock price. The Monte Carlo simulation method are used to calculate VaR of the corresponding shares to convertible bonds, then compared with the Monte Carlo Simulation method based on the t-distribution and TARCH (1, 1)-M model, the author finds the latter stock VaR model is reasonable. At last, according to the financial random process, the author calculates the VaR of convertible bonds options, then figures out VaR of the Convertible bonds.
出处 《改革与战略》 北大核心 2008年第3期46-49,共4页 Reformation & Strategy
基金 广东省自然科学基金管理学科项目(05003980) 中国博士后科学基金应用经济学项目(2005037159) "千百十工程"基金 教育部基金项目(06JA790025)等的资助。
关键词 蒙特卡罗模拟 TARCH-M T分布 VAR 可转换债券 Monte Carlo simulation TARCH-M t-distribution VaR convertible bonds
  • 相关文献

参考文献10

  • 1J P Morgan. Riskmetrics Technical Manual[M]. New York: J. P. Morgan,1995.
  • 2[美]菲利普·乔瑞,陈跃等译.风险价值VaR[M].北京:中信出版社,2005,(1).
  • 3陈守东,俞世典.基于GARCH模型的VaR方法对中国股市的分析[J].吉林大学社会科学学报,2002,42(4):11-17. 被引量:92
  • 4Engle R. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation [J]. Eonometrica. 1982, (50):987-1007.
  • 5Bollerslev T. Generalized Autoregressive Conditional Heteroskedasticity[J]. Journal of Econometria. 1986, (31 ):227-307.
  • 6Glosten L R, Jaganathan R, Runkle D. On the relationship between the expected value and the volatility of the nominal excess return on stocks[J]. Journal of Finance. 1993,(48): 1779-1801.
  • 7徐剑刚,唐国兴.我国股票市场报酬与波动的GARCH-M模型[J].数量经济技术经济研究,1995,12(12):28-32. 被引量:32
  • 8Kupiec P. Techniques for Verifying the Accuracy of Risk Measurement Models[J]. Journal of Derivatives, 1995, (3):73-84.
  • 9魏强,杨宝臣.基于VaR的可转换债券市场风险测度方法[J].沈阳理工大学学报,2005,24(2):71-74. 被引量:3
  • 10[美]Ruey S Tsay.金融时间序列分析[M].潘家柱译.北京:机械工业出版社,2006.179-182.

二级参考文献14

  • 1特里J沃特沙姆 基思帕拉莫尔 陈工孟译.金融数量方法[M].上海:上海人民出版社,2004.286-293.
  • 2Morgan, P. J.. Risk Metrics Technology, Document: 3rd ed. [M] . New York: Morgan Trust Company Global Research, 1995.
  • 3Jorison, P.. Value at Risk: The new benchmark for controlling market risk [M] . New York: The McGraw- Hill Companies, 1997.
  • 4Nelson, D. B.. Conditional heteroskedasticity in asset returns: a new approach [J] . Econometrica, 1991,(59) : 347 - 370.
  • 5Hamilton, D.. Time Series Analysis [M] . Princeton: Princeton University Press, 1994.
  • 6Kendall, P.. Techniques for verifying the accuracy of risk measurement models [ J] . Journal of Derivatives, 1995, (3) : 73- 84.
  • 7Engle, R. F., Ng, V.K.. Measuring and testing the impact of news on volatility [ J ] . Journal of Finance, (48) : 1749 - 1778.
  • 8Basle Committee on Banking Supervision. Amendment to the Capital Accord to Incorporate Market Risks[M] . Basle: Bank for International Settlements, 1996.
  • 9Smithson, C., Minton, L.. Value at risk [J] . Risk, 1996, (9) : 25 - 27.
  • 10Duffie, D., Pan, J.. An overview of value at risk [J] . Journal of Derivatives, 1997, (4): 7-49 .

共引文献127

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部