期刊文献+

利用非线性函数控制的混沌异结构同步 被引量:2

Synchronization Between Two Different Chaotic Systems Using Nonlinear Control Function
下载PDF
导出
摘要 研究了利用非线性函数控制的混沌异结构同步问题.基于Lyapunov稳定性理论,设计了非线性控制函数,使得同步误差系统的Lyapunov函数的形式为V(e)=eTPe(P为正定矩阵),根据数学公式推导,理论证明了该方法可以实现不同混沌系统之间的异结构同步.数值模拟进一步验证了所提出方案的有效性. Chaos synchronization between two different chaotic systems via nonlinear control function is studied in this paper. Based on the luapunov stability theory, the nonlinear control function is designed to synchronize two different chaotic systems, which makes the lyapunov function of the synchronization error system be V(e) = e^TPe(the matrix P is a positive definite matrix). Chaos synchronization of two different chaotic systems have been proved theoretically by deducing mathematically. Numerical simulations show the effectiveness of the proposed method.
作者 万志超
出处 《微电子学与计算机》 CSCD 北大核心 2008年第4期52-55,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60573172) 河南省自然科学基金项目(0511011400)
关键词 混沌 异结构同步 非线性控制函数 chaos synchronization between two different chaotic systems nonlinear control function
  • 相关文献

参考文献5

  • 1Pecora L M, Carroll T L. Synchrnization of chaotic systemx [J]. Physical Review Letters, 1990, 64(8) : 821 - 830.
  • 2Agiza H N, Yassen M T. Synchronization of rssler and chen chaotic dynamical systems using active control [ J ]. Physics Letters A, 2000, 278(1): 191- 197.
  • 3Morgul O, Solak E. On the observer based synchronization of chaotic systems[J]. Physical Review E, 1996, 54(5): 4803 - 4811.
  • 4Jiang G P, Tang K S, Chen G. A simple global synchronization criterion for coupled chaotic systems[J]. Chaos, Solitons & Fractals, 2003, 15(5): 925-935.
  • 5Huang L L, Feng R P, Wang M. Synchronization of chaotic systems via nonlinear control [J ]. Physics Letters A, 2004, 320(4): 271-275.

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部