期刊文献+

两个动能耦合Morse振子系统的分岔现象(英文)

Bifurcation Phenomena of Two Kinetically Coupled Morse Oscillators
下载PDF
导出
摘要 从两个未耦合的Morse振子出发,首先研究了两个动能耦合的Morse振子系统局域模区域内的分岔结构.发现对弱耦合参数δ,相空间中局域模谐振mn共存与系统能量ε通过不等式2^(1/1-ε)≥m/n≥2^(1-ε)相关联.同时报导了对称伸缩本征模的分岔现象与能量及耦合常数的关系.在弱耦合参数δ下,在非常低的能量区域内,对称伸缩经历一个pitch-fork分岔.随后,局域模随能量的增加逐渐形成.对中等高能量ε,对称伸缩本征征模在耦合参数范围[-1,0]内由不稳定到稳定到不稳定等交替变化. Starting from two uncoupled Morse oscillators, this paper first studied the bifurcation structures in the local mode region in phase space for two kinetically coupled Morse oscillators. It turns out that local mode resonances n/m coexistence in phase space for a weak coupling parameter δ relating to the system energy ε through the inequality equation √1/1-ε≥n/m≥√1-εThis paper also reports the bifurcation phenomena of symmetric stretch normal mode with both system energy ε and coupling parameter . At a weak coupling parameter δ,the symmetric stretch experiences a pitch fork bifurcation at a very low energy domain, then the local mode regions are gradually formed with system energy. For an intermediate high energy ε, the symmetric stretch normal mode stays stable and unstable alternatively with coupling parameter 6 in the range [ - 1,0 ].
作者 杨双波
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期52-57,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 the National Natural Science Foundation of China(10674073) Nanjing Normal University (2005102XYY1805)
关键词 分岔 Morse振子 局域模 本征模 谐振 bifurcation, Morse oscillator, local mode, normal mode, resonance
  • 相关文献

参考文献6

  • 1Jaffe C, Brumer P. Local and normal modes: A classical perspective[J]. J Chem Phys, 1980, 73( 11 ) : 5 646-5 658.
  • 2Matsushita T, Terasaka T. Mass dependence of the Kolmogorov-Arnold-Moser stability and lower resonances in the kinetically coupled two-degree-of freedom Morse system[ J]. Chem Phys Lett, 1983, 100: 138-144.
  • 3Yang shuangbo. Torus quantization in local mode region for two kinetically coupled Morse oscillators[J]. Journal of Nanjing Normal University: Natural Science, 2007, 30( 1 ) :33-38.
  • 4Yang shuangbo. Semiclassical wave function of resonance torus by evolving state along periodic orbits[ J]. Journal of Nanjing Normal University: Natural Science, 2006, 29(2) :35-39.
  • 5Yang shuangbo, Kellman M E. Addendum to direct trajectory method for semiclassical wave functions [ J ]. Phys Rev A, 2002, 65(3) : 034103-1-034103-4.
  • 6Yang Shuangbo, Kellman Michael E. Perspective on semiclassical quantization: How periodic orbits converge to quantizing tori[ J]. Phys Rev A, 2002,66(5) : 052113-1-052113-11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部