期刊文献+

一个解方程u_t+uu_x=0满足两个守恒律的有限体积格式

A finite Volume Scheme Satisfying Two Conservation Laws for u_t+uu_x=0
下载PDF
导出
摘要 本文采用有限体积方法为方程ut+uux=0;设计了一种差分格式,它的数值解同时满足两个守恒律,能更好地保持解物理上的守恒性质. This paper designs a difference scheme for ut + uux = 0, which is of the finite volume type. The scheme satisfies two related conservation laws.
作者 程晓亮
出处 《吉林师范大学学报(自然科学版)》 2008年第1期79-80,共2页 Journal of Jilin Normal University:Natural Science Edition
关键词 ut+uux=0 守恒律 网格平均 插值逼近 ut + uux = 0 equation conservation laws cell-average interpolative approximation
  • 相关文献

参考文献3

二级参考文献9

  • 1李红霞,茅德康.单个守恒型方程熵耗散格式中熵耗散函数的构造[J].计算物理,2004,21(3):319-326. 被引量:9
  • 2R.J. LeVeque. Finite Volume Methods for Hyperbolic Problem. Cambridge University Press,United Kingdom, 2002.
  • 3A. Harten, S. Osher, B. Engquist, S. Chakravarthy. Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Nummer. Math., 1986, 2: 347~377.
  • 4A. Harten, B.Engquist, S.Osher, S.R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ.J. Comput. Phys., 1987, 71: 231~303.
  • 5H. Li, D. Mao. Entropy dissipation scheme for hyperbolic systems of conservation laws in one space dimension,(preprint ).
  • 6李红霞.[D].上海大学,11903~99118086.
  • 7Chi-Wang Shu. TVB uniformly high-order schemes for conservation laws. Math. Comput.,1987, 49: 105~121.
  • 8Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Lecture Notes in Math, Springer, 1998, 325~432.
  • 9P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Num. Anal., 1984, 21: 995~1011.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部