期刊文献+

非凸优化问题的组合同伦方法

The Combined Homotopy Methods for Nonconvex Optimization Problem
下载PDF
导出
摘要 借鉴已有的理论结果,研究具体一类非凸约束区域上优化问题的组合同伦方法的实现。针对这类非凸约束区域,给出了拟法锥的构造方法,证明了所选映射关于约束梯度是正独立的、可行域关于所选映射是满足拟法锥条件的,构造了拟法锥条件下的组合同伦方程,给出了数值例子。 Drawing lessons from the ready theories results, this paper deals with the achievement of optimization problem about combined holnotopy interior point method (CHIP) on concrete a type of noneonvex constrained domain. Contraposing to this nonconvex constrained domain, we give the structure methcd of the quasi - normal. Prove the chosen mappings on constrained grads are positive independent, the chosen mapping on constraints feasible set satisfy the quasi - normal cone condition, and construct combined homotopy equation under the quasi - normal cone condi- tion with numerical value and examples.
作者 高云峰
出处 《吉林农业科技学院学报》 2008年第1期45-46,共2页 Journal of Jilin Agricultural Science and Technology University
关键词 非凸优化 组合同伦方法 正独立 拟法锥条件 noneonvex optimization combined homotopy method positive independent the quasi - normal cone condition
  • 相关文献

参考文献1

二级参考文献10

  • 1Garcia C B, Zangwill W I. Pathways to Solutions Fixed Points and Equilibria. N J: Englewood Cliffs,Prentice-Hall, 1981.
  • 2Allgower, E L, Georg K. Numerical Continuation Method: an Introduction. Berlin, New York:Springer-Verlag, 1990.
  • 3Kojima M, Mizuno S, Yoshise A. A Primal-dual Interior Point Algorithm for Linear Programming.In: Progress in Mathematical Programming, Interior Point and Related Methods, ed. Megiddo N.New York: Springer-Verlag, 1988, 29-47.
  • 4Adler I, Resende M G C, Veiga G, Karmarkar N. An Implementation of Karmarkar's Algorithm for Linear Programming Problems. Mathematical Programming, 1989, 44:287-335.
  • 5Lin Z H, Yu B, Feng G C. A Combined Homotopy Interior Point Method for Convex Programming Problem. Appl. Math. Comput., 1997, 84:193-211.
  • 6Monteiro R D C, Adier I. Interior Path Following Primal-dual Algorithms I: Linear Programming.Mathematical Programming, 1989, 44:27-41.
  • 7Wang Y, Feng G C, Liu T Z. Interior Point Algorithms for Convex Nonlinear Programming Problems.Numerical Mathematics, J. Chinese Universities, 1992, 1: 1-8.
  • 8Zhu J A. A Path Following Algorithms for a Class of Convex Programming Problems. ZOR-Methods and Models of Operations Research, 1992, 36:359-337.
  • 9Feng G C, Lin Z H, Yu B. Existence of Interior Pathway to a Karush-Kuhn-Tucker Point of a Nonconvex Programming Problem. Nonlinear Analysis, Theory, Methods & Applications, 1998, 32(6):761-768.
  • 10Yu B, Feng G C. Globally Convergent Interior Path Following Methods for Nonlinear Programming and Brouwer Fixed Point Problems. In: Advances in Nonlinear Programming, ed. Yuan Yaxiang,Netherlands: Kluwer Academic Publisher, 1998, 325-342.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部