期刊文献+

基于不完全模态测量数据的粘性阻尼矩阵的修正

Updating Viscous Damping Matrix Based on Incomplete Complex Modal Measured Data
下载PDF
导出
摘要 在实际工程中,由有限元模型得到的计算值与通过试验获得的测量值之间往往存在偏差,为了能够精确预测结构的动力响应,依据测量模态数据修正存在的动力模型是非常必要的。本文考虑用不完备复模态测量数据修正粘性阻尼矩阵的问题。在假定分析质量矩阵与刚度矩阵是精确的情况下,通过求解一个约束最优化问题,得到了满足特征方程的加权Frobenius范数意义下的最优对称非负定修正矩阵。 There are certain errors between the prediction from the finite element model and the experimental results from the test model or an actual structure. Updating the existing structural dynamic model based on the measured modal data is very important in predicting the actual behaviors of the structure precisely. The analytical mass and stiffness matrices are assumed correct and only the viscous damping matrix needs to be updated in this paper. By solving a constrained optimization problem,the optimal corrected semi-positive definite damping matrix complied with the required eigenvalue equation is found under a weighted Frobenius norm sense.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2008年第1期91-94,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省高校自然科学研究计划性项目(2005SL001J)
关键词 有限元模型 粘性阻尼 模型修正 模态数据 finite element model viscous damping model updating modal data
  • 相关文献

参考文献12

  • 1[1]RAYLEIGH L.The Theory of Sound[M].New York:Dover Publications,1945.
  • 2[2]BATHE K J.Finite Element Procedures in Engineering Analysis[M].New Jersey:Prentice-Hall,Englewood Cliffes,1982.
  • 3[3]FRISWELL M I,MOTTERSHEAD J E.Finite Element Model Updating in Structural Dynamics[M].Dordrecht,Boston:Klumer Academic Publishers,1995:1-6.
  • 4[4]MOTTERSHEAD J E,FRISWELL M I.Model updating in structural dynamics:a surrey[J].Journal of Sound and Vibration,1993,167(3):347-375.
  • 5[5]ZHANG Q W,CHANG T Y P,CHANG C C.Finite element model updating for the Kap Shui Mun cable-stayed bridge[J].Journal of Bridge Engineering,ASCE,2000,6(4):285-293.
  • 6[6]ORETA A W C,TANABE T A.Element identification of member properties of framed structures[J].Journal of Structural Engineering,ASCE,1994,120(4):1961-1976.
  • 7[7]ZIMMERMAN D C,WIDENGREN M.Correcting finite element modes using a symmetric eigenstructure assignment technique[J].AIAA Journal,1990,28(9):1670-1676.
  • 8[8]DOEBLING S W,FARRAR C R,PRIME M B.A summary review of vibration-based damage identification methods[J].The Shock and Vibration Digest,1998,30:91-105.
  • 9[9]PILKEY D F.Computation of a damping matrix for finite element model updating[D].USA:Virginia Polytechnical Institute and State University,1998.
  • 10孔翠芳,戴华.用不完全模态试验数据修正粘性阻尼矩阵[J].振动工程学报,2005,18(1):85-90. 被引量:11

二级参考文献12

  • 1戴华.用试验数据修正刚度矩阵[J].航空学报,1994,15(9):1091-1094. 被引量:12
  • 2戴华.对称矩阵反问题解的稳定性[J].南京航空航天大学学报,1994,26(1):133-139. 被引量:3
  • 3张磊,湖南数学年刊,1987年,1期,58页
  • 4孙继广,计算数学,1987年,9卷,2期,206页
  • 5张磊,计算数学,1987年,9卷,4期,431页
  • 6张磊,湖南数学年刊,1986年,2期,43页
  • 7Chen S Y , Ju M S, Tsuel Y G. Estimation of system matrices by dynamic condensation and application to structural modlficatlon[J]. AIAA J, 1995,3: 2 199-2 204.
  • 8Halevi Y, Kenigsbuch R. Model updating of the complex modeshapes and the damping matrix[J].Inverse Problems in Engineering. 2000,8: 143-162.
  • 9Higham N J. Computing a nearest symmetric positive semidefinite matrix [J]. Linear Algebra Appl. 1988,103:103-118.
  • 10Minas C, Inman D J. Identification of a nonproportional damping matrix from incomplete modal information[J]. ASME J of Vibration and Acoustics.1991,113: 219-224.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部