期刊文献+

NORM SUMMABILITY OF NRLUND LOGARITHMIC MEANS ON UNBOUNDED VILENKIN GROUPS

NORM SUMMABILITY OF NRLUND LOGARITHMIC MEANS ON UNBOUNDED VILENKIN GROUPS
下载PDF
导出
摘要 The (Noerlund) logarithmic means of the Fourier series is:tnf=1/ln ^n-1∑k=1 Skf/n-k, where ln=^n-1∑k=1 1/k In general, the Fej6r (C, 1) means have better properties than the logarithmic ones. We compare them and show that in the case of some unbounded Vilenkin systems the situation changes. The (Noerlund) logarithmic means of the Fourier series is:tnf=1/ln ^n-1∑k=1 Skf/n-k, where ln=^n-1∑k=1 1/k In general, the Fej6r (C, 1) means have better properties than the logarithmic ones. We compare them and show that in the case of some unbounded Vilenkin systems the situation changes.
出处 《Analysis in Theory and Applications》 2008年第1期1-17,共17页 分析理论与应用(英文刊)
基金 The first author is supported by the Békésy Postdoctoral fellowship of the Hungarian Ministry of Education B91/2003 the second author is supported by the Hungarian National Foundation for Scientific Research (OTKA),grant no. M 36511/2001, T 048780 the Széchenyi fellowship of the Hungarian Ministry of Education Sz184/2003.
关键词 unbounded Vilenkin group Fejer means logarithmic means norm convergence unbounded Vilenkin group, Fejer means, logarithmic means, norm convergence
  • 相关文献

参考文献1

二级参考文献13

  • 1Szasz, O.: On the logarithmic means of rearranged partial sums of Fourier series. Bull. Amer. Math. Soc.,48, 705-711 (1942).
  • 2Yabuta, K.: Quasi-Tauberian theorems, applied to the summability of Fourier series by Riesz's logarithmic means. T6h6ku Math. Journ., 22, 117-129 (1970).
  • 3Simon, P.: Strong convergence of certain means with respect to the Walsh-Fourier series. Acta Math.Hungar., 49, 425-431 (1987).
  • 4Gat, G.: Investigation of certain operators with respect to the Vilenkin system. Acta Math. Hungar.,61(1-2), 131-149 (1993).
  • 5Nagy, K.: Norm convergence of Fejer means of certain functions with respect to UDMD product systems.Acta Acad. Paed. Agriensis, 22, 119-126 (1994).
  • 6Blahota, I.: On a norm inequality with respect to Vilenkin-like systems. Acta Math. Hungar., 89, 15-27(2000).
  • 7Moricz, F,: Approximation by NSrlund means of Walsh-Fourier series. Journal of Approximation Theory,70, 375-389 (1992).
  • 8Paley, R. E. A. C.: A remarkable series of orthogonal functions. Proc. London Math. Soc., 34, 241-279(1932).
  • 9Schipp, F., Wade, W. R., Simon, P., Pal, J.: Walsh series: an introduction to dyadic harmonic analysis,Adam Hilger, Bristol-New York, 1990.
  • 10Zhizhiashvili, L.V.: Some question of multidimensional harmonic analysis, Izdatelstvo Tbiliskogo Universiteta, Tbilisi, 1996 (in Russian).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部