期刊文献+

基于小波变换和支持向量机的电力电子故障诊断 被引量:9

New Method of Wavelet and Support Vector Machine for Power Electronic Fault Diagnose
下载PDF
导出
摘要 采用小波分析与支持向量机(SVM)对电力电子故障进行自动识别和诊断,运用变尺度分辨小波方法对电力电子故障信号进行特征处理,SVM能够对小样本数进行模式识别并且具有良好的分类推广能力。在小波分析特征基础上,采用分布式多SVM分类器识别电力电子故障。实验证明,该方法能准确有效地对电力电子故障进行识别和诊断。 The combination of wavelet and support vector machine was introduced to solve automatic detection of power electronic fault diagnose.Wavelet analysis which holds multi-resolution and multi-scale was introduced to deal with the signal characteristics.Support vector machine could carry through the pattern recognition on the small-samples and had well generalized ability.Based on wavelet analysis for signal characteristics,the distributed multi-SVM classifier was utilized to identify the power electronic fault diagnose,the experimental results also show that this method can efficiently identify and diagnose the power electronic fault diagnose.
出处 《煤矿机械》 北大核心 2008年第4期204-206,共3页 Coal Mine Machinery
关键词 小波变换 支持向量机 电力电子故障诊断 wavelet support vector machine power electronic fault diagnose
  • 相关文献

参考文献6

  • 1ModeU D, Donnald J. Data. Acquisition and Wheel Inspection Methodologies Using Eddy Current Sensors. Instrumentation in the Aerospace Industry: Proceedings of the International Symposium, 1994.
  • 2Platt M. Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machine. In: Advances in Kernel Methods- Support Vector Learning[M]. Cambridge, MA: MIT Press, 1999.
  • 3Nello C, John ST. An Introduction to Support Vector Machine and Other Kernel - Based Learning Methods[ M]. Cambridge: Cambridge University Press, 2000.
  • 4VN Vapnik. The Nature of Statistical Learning Theory[ M] .Springer: NewYork, 1998.
  • 5王雪,付振波.采用小波分析与支持向量机的车轮踏面擦伤识别方法[J].中国机械工程,2004,15(18):1641-1643. 被引量:8
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

二级参考文献5

  • 1Modell D, Donald J. Data Acquisition and Wheel Inspection Methodologies Using Eddy Current Sensors. Instrumentation in the Aerospace Industry: Proceedings of the International Symposium, 1994
  • 2Platt M. Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. In: Advances in Kernel Methods-Support Vector learning. Cambridge, MA: MIT Press,1999
  • 3Nello C, John S T. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, 2000
  • 4卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

共引文献2274

同被引文献54

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部