期刊文献+

基于α-截集的模糊数排序方法研究 被引量:8

A Study of the Priority Method-Basis on α-Cut Sets for Fuzzy Numbers
下载PDF
导出
摘要 提出了一种基于α-截集的模糊数排序方法.这种方法的思想是:模糊数在α-截集下的区间数中点与其相应权重之积越大越好,通过积分来表示模糊数的排序指标.若存在2个模糊数相等的情形,通过它们的离散度来给出它们的排序.提出了基于α-截集的三角模糊数互反判断矩阵的目标规划法.结合本文所给出的模糊数排序方法,得到各方案的最终排序,从而说明其有效性和实用性. This paper presents a priority method based on α-cut set for fuzzy numbers. The idea of this method is that the bigger of the product of fuzzy number's center and its corresponding weight under the α- cut set the better, the fuzzy number's priority index is expressed through integral. If there are two fuzzy numbers that have equal situation, we give their priority index through their degree of discrete. This paper proposes goal programming method of triangular fuzzy number reciprocal judgment matrix based on α-cut set. We obtain the alternatives final priority with the fuzzy number priority method to explain theirs validity and usability.
出处 《海南大学学报(自然科学版)》 CAS 2008年第1期21-25,共5页 Natural Science Journal of Hainan University
基金 国家自然科学基金项目(10601036) 广西研究生教育创新计划项目(2006105930701M16)
关键词 α-截集 模糊数 三角模糊数 互反判断矩阵 排序 α- cut set Fuzzy numbers Triangular fuzzy numbers Reciprocal judgment matrix Priority
  • 相关文献

参考文献15

  • 1ABBASBANDT S,ASADY B. Ranking of numbers by sign distance[ J ]. Information Sciences, 2006,176:2405 -2416.
  • 2VAN LAARHOVEN P J M, PEDRYCZ W. A fuzzy extension of Saaty' s priority theory[J]. Fuzzy Sets and Systems, 1983, 11 : 229 - 241.
  • 3巩在武,刘思峰.三角模糊数互补判断矩阵的一致性及其排序研究[J].控制与决策,2006,21(8):903-907. 被引量:35
  • 4CHANG D Y. Applications of the extent analysis method on fuzzy AHP[ J]. European Journal of Operational Research, 1996, 95 : 649 - 655.
  • 5DENG Y, ZHU Z F, LIU Q. Ranking fuzzy numbers with an area method using radius of gyration [ J]. Computers & Mathematics with Applications, 2006,51:1127 -1136.
  • 6TIRYAKI F, AHLATCIOGLU M. Fuzzy stock selection using a new fuzzy ranking and weighting algorithm[ J]. Applied Mathematics and Computation, 2005,170 : 144 - 157.
  • 7ABBASBANDY S, AMIRFAKHRIAN M. The nearest trapezoidal form of a generalized left right fuzzy number[ J ]. International Journal of Approximate Reasoning, 2006,43 : 166 - 178.
  • 8ABBASBANDY S,AMIRFAKHIAN M. The nearest approximation of a fuzzy quantity in parametric form[ J]. Applied Mathematics and Computation, 2006,172 : 624 - 632.
  • 9ABBASBANDY S,ASADY B. Ranking of fuzzy numbers by sign distance[ J ]. Information Sciences 2006,176:2405 -2416.
  • 10GRZEGORZEWSKI P,MRKA E. Trapezoidal approximations of fuzzy numbers[ J]. Fuzzy Sets and Systems, 2005,153: 115 - 135.

二级参考文献10

共引文献34

同被引文献77

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部