期刊文献+

非线性建筑结构振动控制研究 被引量:1

Nonlinear Building Vibration Control
下载PDF
导出
摘要 为了反映建筑结构的非线性特征,本文引入了bouc-wen模型。由于所采用的非线性模型很难降阶,同时考虑到直接对模型进行控制器设计也很难,为此,本文提出了一种基于能量的新的振动主动控制策略。该方法是通过比较允许能量与实际能量来确定结构控制力的大小,而其方向是通过对能量求导确定。由于不需要求解线性矩阵不等式,所以计算简单,操作方便。并且当采用同样容量限的多个作动器时,控制输出力一致,从而避免设计多个控制系统,简化了控制器设计。此外,由于采用阶跃控制,控制系统便于实现。最后,以八层建筑物为例来说明本文方法的可行性。 To reflect the nonlinear characteristic of building structures, the bouc-wen model is introduced, but it is difficult to reduce the model order and design the controller for the nonlinear model. A new strategy for vibration active control based on energy is proposed, where the amplitude of control force is derived by comparing permitting energy with actual energy, and whose direction is determined by the energy derivative. The proposed method takes the advantages of simple calculation and convenient operation as it is unnecessary to solving the linear matrix inequalities(LMIs). The output control forces are identical if the used actuators are endowed with the same capacity limitation to simplify the design of controllers and avoid multi control system. And the step function is adopted as the control function to facilitate constructing the control system. An example of 6-storey building is simulated to verify feasibility of the proposed method.
机构地区 河海大学
出处 《应用力学学报》 CAS CSCD 北大核心 2008年第1期38-41,共4页 Chinese Journal of Applied Mechanics
基金 江苏省第二批"六大人才高峰"资助项目(2005528712) 江苏省自然科学基金(BK2003083)
关键词 非线性 能量 作动器 建筑物 nonlinear, energy, actuator, buildings.
  • 相关文献

参考文献10

  • 1胡海岩,郭大蕾,翁建生.振动半主动控制技术的进展[J].振动.测试与诊断,2001,21(4):235-244. 被引量:47
  • 2Wu J C, Yang J N. Modified sliding mode control for wind-excited benchmark problem[J]. ASCE Journal of Engineering Mechanics, 2004,130(4) :499-504.
  • 3Kevin K F, Yang R. Predictive instantaneous optimal control of inelastic structures during earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(14):2179-2195.
  • 4Pham K D, Jin G, Sain M K, et al. Generalized linear quadratic Gaussian techniques for the wind benchmark problem[J]. ASCE Journal of Engineering Mechanics, 2004, 130(4):466- 470.
  • 5蔡国平,孙峰,王超.建筑结构振动优化混合控制[J].工程力学,2000,17(2):129-133. 被引量:6
  • 6Matthies H G, Meyer M. Nonlinear Galerkin methods for the model reduction of nonlinear dynamical systems. Computer and Structures, 200:3, 81:1277-1286.
  • 7潘颖,王超,陈建斌.基于Liapunov理论的结构非线性振动的混合控制[J].应用力学学报,2003,20(4):46-49. 被引量:3
  • 8Antonio D, Marco L. An energy-based control for an n-Hbridges multilevel active rectifier [J]. IEEE Transactions on Industrial Electronics, 2005, 52(3) : 670-678.
  • 9涂文戈,邹银生.基于能量方程的建筑结构半主动控制[J].地震工程与工程振动,2005,25(3):145-151. 被引量:6
  • 10Min K W, Hwang J S. Probabilistic approach for active control based on struetural energy[J]. Earthquake Engineering and Struetural Dynamies, 2003, 32: 2301-2318.

二级参考文献18

  • 1梅胜敏,秦太验,陶宝祺.SMA用于振动主动控制的方法初探[J].力学与实践,1995,17(4):16-19. 被引量:26
  • 2王洪礼,牛西泽,孙景.汽车悬架系统的半主动控制[J].天津大学学报,1996,29(2):177-182. 被引量:4
  • 3Wen Y K,J Appl Mech Rev,1989年,42卷,2期,39页
  • 4周煦,数值计算方法,1989年
  • 5胡海岩,金栋平.基于分段线性吸振器的振动半主动控制[J].振动工程学报,1997,10(2):125-130. 被引量:10
  • 6Creamer N G, Junkins J L. Low-authority eigenvalues placement for second-order structural systems [J]. Journal of Guidance, Control, and dynamics, 1991, 14(3):698~701.
  • 7Yao T JP. Conception of structure control[J]. Journal of the Structure Division, ASCE, 1972,98 (7):1567~1574.
  • 8Honsner G W, Soong T T, Masri S F. Second generation of active structure control[A].Proc of 1 st World Conference on Structural Control[C].Los Angeles, California, USA, 1994.
  • 9Margolis D L. Semi-active control of wheel hop in ground vehicles[J].Vehicle System Dynamics,1983,12:317~330.
  • 10Yang J N, Wu J C, Li Z. Control of seismic-excited building using active variable stiffness systems [J]. Engineering Structures, 1996, 18 (8):589~596.

共引文献57

同被引文献18

  • 1Ribakov Y,Agranovich G.Using a limited set of mr dampers for improving structural seismic response[J].Structural Control and Health Monitoring,2015,22(4):615-630.
  • 2Brando G,D'Agostino F,De M.Seismic performance of MR frames protected by viscous or hysteretic dampers[J].Structural Design of Tall and Special Buildings,2015,24(9):653-671.
  • 3Sireteanu T,Mitu A M,Giuclea M,et al.A comparative study of the dynamic behavior of Ramberg-Osgood and Bouc-Wen hysteresis models with application to seismic protection devices[J].Engineering Structures,2014,76:255-269.
  • 4Du C B,Wan F X,Yu G J.A magnetic flux leakage study of a self-decoupling magnetorheological damper[J].Smart Materials and Structures,2015,20(6):065019.
  • 5Baber T T,Wen Y K.Random vibration hysteretic,de- grading systems[J].Journal of the Engineering Mechan- ics Division,1981,107(6):1069-1087.
  • 6Loh C H,Chung S T.A three-stage identification ap- proach for hysteretic systems[J].Earthquake engineering & structural dynamics,1993,22(2):129-150.
  • 7Min K W,Hwang J S,Lee S H,et al.Probabilistic ap- proach for active control based on structural energy[J].Earthquake engineering & structural dynamics,2003,32(15);2301-2318.
  • 8田莉,陈换过,祝俊,张利绍,陈文华.基于自适应模拟退火遗传算法的传感器优化配置研究[J].振动工程学报,2012,25(3):238-243. 被引量:21
  • 9于国军,杜成斌,万发学.高耗能自解耦式MR阻尼器的设计及性能试验[J].振动.测试与诊断,2012,32(3):426-431. 被引量:4
  • 10姜群,晏雨.改进的遗传算法在TSP问题中的应用[J].重庆理工大学学报(自然科学),2012,26(9):96-99. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部