期刊文献+

非交换环上的Zariski拓扑 被引量:3

Zariski Topology over a Noncommutative Ring
下载PDF
导出
摘要 设R是任意带单位元的结合环,用素谱[Specl(R),Γ2(R)]的一些拓扑性质去刻画环的性质。对任意环R,用N(R)表示环R的素根,证明了:R/N(R)是强Harmonic环当且仅当[Specl(R),Γ2(R)]是正规空间。且建立了[Specl(R),Γ2(R)]的开闭集与环R的幂等元之间的关系。 Let R be any associative ring with identity. In this paper, some properties of strongly Harmonic ring are obtained by using some topological properties of the spectra [ Specl(R) ,Г^2(R)]. It is proved that if R any ring and N (R) is a prime radical of R, then R/N(R) is a strongly Harmonic ring if and only if [Specl(R), Г^2(R) ] is a normal space. The relationships of clopen sets in [ Specl (R), Г^2(R)] and idempotents in R are investigated.
作者 张国印
出处 《金陵科技学院学报》 2008年第1期1-5,共5页 Journal of Jinling Institute of Technology
基金 国家自然科学基金资助(10671137) 江苏省高校自然科学基金资助(06kjd110068)
关键词 强Harmonic环 正规空间 开闭集 幂等元 strongly Harmonic ring normal space clopen set idempotent
  • 相关文献

参考文献12

  • 1[1]ZHANG Guo-yin,TONG Wen-ring and WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2879-2896
  • 2[2]ZHANG Guo-yin,TONG Wen-ting and WANG Fang-gui.Spectrum of a Noncommntative Ring[J].Comm.Algebra,2006,34(8):2795-2810
  • 3[3]ZHANG Guo-yin,WANG Fang-gui and Xu Wen-bing.Gelfand Factor Rings and Weak Zariski Topologies[J].Comm.Algebra,2007,35(8):2628-2645
  • 4张国印.GELFAND商环和正规素谱[J].金陵科技学院学报,2007,23(2):1-4. 被引量:5
  • 5王景昕,张国印.环的幂等元与素谱的开闭集[J].金陵科技学院学报,2007,23(3):5-8. 被引量:4
  • 6[6]Rosenberg A L.Noncommutative Algebraic Geometry and Representations of Quantized Algebras[M].Dordrecht,Boston and London:Kluwer Academic Publishers,1995
  • 7[7]Demarco G,Orsatti A.Commutative Rings in which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466
  • 8[8]Sun S H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194
  • 9[9]Sun S H.Noncommutative rings in which every prime ideal is contained in a unique maximal ideal[J].J.of Pure and Applied Algebra,1991,76:179-192
  • 10[10]McDonald B R.Linear Algebra Over Commutative Rings[M].New York and Basel:Marcel Dekker,Inc.1984

二级参考文献24

  • 1张国印.拓扑模的谱[J].金陵科技学院学报,2006,22(3):5-8. 被引量:2
  • 2张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 3张国印.GELFAND商环和正规素谱[J].金陵科技学院学报,2007,23(2):1-4. 被引量:5
  • 4[1]ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui.Spectrum of a Noncommutative Ring[J].Comm.Algebra,2006,34(8):2795-2810.
  • 5[2]ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2879-2896.
  • 6[3]Demarco G,Orsatti A.Commutative Rings in Which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466.
  • 7[4]Sun S H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194.
  • 8[5]SunS H.Noncommutative rings in which every prime ideal is contained in a unique maximal ideal[J].J.of Pure and Applied Algebra,1991,76:179-192.
  • 9[9]McDonald B R.Linear Algebra Over Commutative Rings[M].New York and Basel:Marcel Dekker Inc.,1984.
  • 10[10]Dauns J.Primal modules[J].Comm.Algebra,1997,25,(8):2409-2435.

共引文献4

同被引文献26

  • 1张国印.拓扑模的谱[J].金陵科技学院学报,2006,22(3):5-8. 被引量:2
  • 2张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 3张国印.GELFAND商环和正规素谱[J].金陵科技学院学报,2007,23(2):1-4. 被引量:5
  • 4ZHANG Guo-yin,WANG Fang-gui,Xu Wen-bing. Gelfand Factor Rings and Weak Zariski Topologies[J]. Comm Algebra,2007,35(8) :2628--2645.
  • 5Sun,S H. Non-commutative Rings in which Every Prime Ideal is Contained in a Unique Maximal Ideal[J]. J of Pure and Applied Algebra, 1991,76 : 179-192.
  • 6Kelley ,J P. General Topology[M]. New York :Springer-Verlag, 1950:135-172.
  • 7Rosenberg, A L. Non-commutative Algebraic Geometry and Representations of Quantized Algebras [M]. Dordrecht,Boston and London : Kluwer Academic Publishers, 1995 : 1- 123.
  • 8ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui. Spectrum of a Non-commutative Ring[J]. Comm Algebra, 2006, 34(8) :2795--2810.
  • 9Sun,S H. Rings in which Every Prime Ideal is Contained in a Unique Maximal Right Ideal[J]. J of Pure and Applied Algebra, 1992,78 : 183-194.
  • 10ZHANG Guo-yin, TONG Wen-ting, WANG Fang-gui. Spectra of Maximal 1-sided Ideals and Primitive Ideals [J]. Comm Algebra, 2006,34 (8) : 2879 - 2896.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部