期刊文献+

基于PSO优化空间约束聚类的SAR图像分割 被引量:12

SAR Image Segmentation Based on Spatially Constrained FCM Optimized by Particle Swarm Optimization
下载PDF
导出
摘要 相干斑噪声的存在使得合成孔径雷达(SAR)图像的分割问题变得非常复杂.本文提出一种具有鲁棒抗噪特性的SAR图像分割方法,该算法通过将多尺度条件下的边缘信息以及相邻像素的相对位置和强度信息所构成的空间信息融入模糊C-均值(FCM)聚类算法的相似性测度中,增强了分割方法的抗噪性.空间信息对FCM聚类算法的调控由粒子群优化(PSO)算法完成,优化的调控参数有助于获得良好的分割结果.该算法对初始分割不敏感,并具有鲁棒的抗噪性能.MSTAR数据的分割实验结果表明:该算法能够有效地分割SAR图像,与通过改进型FCM(IFCM)算法获得的分割结果比较,分割结果明显改善. The segmentation of synthetic aperture radar (SAR) images is greatly compficated due to the presence of speckle. A SAR image segmentation method robust to speckle is proposed in this paper. Spatial information, containing the edge information and the relative location and intensity information of neighboring pixels across scales,is incorporated into the similarity measure of fuzzy c-means (FCM) algorithm, which enhances the robustness of the method to speckle. The FCM algorithm is spatially adjusted by the parfide swarm optimization (PSO) algorithm to obtain appropriate adjustment parameters that can provide better segmenta- tion results. The proposed method is not sensitive to initial seginentation result and is robust to speckle. Experimental results on the MSTAR dataset demonstrate that the proposed method is capable of effectively segmenting SAR images and achieving better results than the improved FCM (IFCM) algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第3期453-457,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60673097 60703109) 国家部委科技资助项目(No.A1420060172 51307040103)
关键词 SAR图像分割 多尺度分析 模糊C-均值聚类 粒子群优化算法 synthetic aperture radar (SAR) image segmentation multi-scale analysis fuzzy c-means (FCM) clustering particle swarm optimization (PSO) algorithm
  • 相关文献

参考文献10

  • 1Shen S, Sandham W, Granat M, et al. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization[ J]. IEEE Transactions on Information Technology in Biomedicine, 2005,9 ( 3 ) : 459 - 467.
  • 2Liew A W, Yah H, Law N F. Image segmentation based on adaptive cluster prototype estimation[ J ]. IEEE Transactions on Fuzzy Systems, 2005,13(4) :444 - 453.
  • 3Tolle C R, McJunkin T R, Gorsich D J. Suboptimal minimum cluster volume cover-based method for measuring fractal dimension[ J ]. IEEE. Transactions on Pattem Analysis and Machine Intelligence, 2003,25( 1 ) -32 - 41.
  • 4Chumsamrong W, Thitimajshima P, Rangsanseri Y. Synthetic aperture radar (SAR) image segmentation using a new modified fuzzy c-means algorithm[ A ]. Proceedings of the Intemational Geoscience and Remote Sensing Symposium[ C ]. Honolulu, Hawaii, 2000. 624 - 626.
  • 5Oskoei M A, Hu H S. GA-based feature subset selection for myoelectric classification [ A ]. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics [ C ]. Kunming, China: IEEE, 2006. 1048 - 1053.
  • 6Omran M G, Salman A, Engelbrecht A P. Dynamic clustering using particle swarm optimization with application in image segmentation [ J ]. Pattem Analysis and Applications, 2005, 8 (4) :332 - 344.
  • 7Basu M. Gaussian-based edge-detection methods-a survey [J]. IEEE Transactions on Systems,Man and Cybemetics-Part C,2002,32(3) :252 - 260.
  • 8Vielva P, Wiaux Y, Martinez-Gonzalez E, Vandergheynst P. Steerable wavelet analysis of CMB structures alignment [ J ]. New Astronomy Reviews, 2006,50: 880 - 888.
  • 9Mouser C R, Dunn S A. Comparing genetic algorithms and partide swarm optimization for an inverse problem exercise[ J ]. The Australian & New Zealand Industrial and Applied Mathematics Journal, 2005,46: C89 - C101.
  • 10Bird S, Li X. Enhancing the robusmess of a speciation-based PSO[ A]. Proceedings of the IEEE Congress on Evolutionary Computation[ C ]. Vancouver, Canada: IEEE, 2006. 3185 - 3192.

同被引文献152

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部