摘要
本文提出一种适用于任意未知统计特性的代数拖尾冲击噪声(包含所有对称α稳定分布噪声)环境下的波束形成算法.算法利用输出信号和参考信号之间"几何功率"误差的最小化来求解最优权向量."几何功率"误差定义成误差信号的对数矩的形式.我们采用迭代复加权最小二乘估计来求解最小"几何功率"误差波束形成权向量.与基于最小分数低阶误差波束形成算法相比,最小"几何功率"误差波束形成算法计算更为简单;不需要噪声特征指数的先验信息或估计;适用于更广的冲击噪声环境;具有更小的估计误差.计算机仿真验证了算法的有效性.
This paper proposes a new beamforming approach, against arbitrary algebraicaUy-tailed impulsive noise of otherwise unknown statistics. (This includes all symmetric alpha stable noises). This new beamformer minimizes the “geometric power” error between the beamformer' s output and the reference signal. This “geometric power” error is defined in terms of the logarith- mic moment. The iteratively re-weighted least squares (IRIS) algorithm is adopted to calculate the proposed beamformer weights. Relative to costmary fractional lower order errors based beamformer, the proposed beamformer offers advantages such as: simpler computationally; needing no prior information nor estimation of the numerical value of the impulsive noise's effective characteristic exponent, applicable to a wider class of impulsive noises; and improving the performance in terms of lower estimation errors. Computer simulation results verify the efficacy of the proposed beamfonner.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2008年第3期510-515,共6页
Acta Electronica Sinica
关键词
冲击噪声
波束形成l几何功率
对数矩
对称a稳定分布
impulsive noise
beamforming
geometric power
logarithmic moment
symmetric alpha stable distribution