期刊文献+

冲击噪声环境中最小“几何功率”误差波束形成算法 被引量:8

Minimum "Geometric Power" Error Beamforming Amid Heavy-Tailed Impulsive Noise of Unknown Statistics
下载PDF
导出
摘要 本文提出一种适用于任意未知统计特性的代数拖尾冲击噪声(包含所有对称α稳定分布噪声)环境下的波束形成算法.算法利用输出信号和参考信号之间"几何功率"误差的最小化来求解最优权向量."几何功率"误差定义成误差信号的对数矩的形式.我们采用迭代复加权最小二乘估计来求解最小"几何功率"误差波束形成权向量.与基于最小分数低阶误差波束形成算法相比,最小"几何功率"误差波束形成算法计算更为简单;不需要噪声特征指数的先验信息或估计;适用于更广的冲击噪声环境;具有更小的估计误差.计算机仿真验证了算法的有效性. This paper proposes a new beamforming approach, against arbitrary algebraicaUy-tailed impulsive noise of otherwise unknown statistics. (This includes all symmetric alpha stable noises). This new beamformer minimizes the “geometric power” error between the beamformer' s output and the reference signal. This “geometric power” error is defined in terms of the logarith- mic moment. The iteratively re-weighted least squares (IRIS) algorithm is adopted to calculate the proposed beamformer weights. Relative to costmary fractional lower order errors based beamformer, the proposed beamformer offers advantages such as: simpler computationally; needing no prior information nor estimation of the numerical value of the impulsive noise's effective characteristic exponent, applicable to a wider class of impulsive noises; and improving the performance in terms of lower estimation errors. Computer simulation results verify the efficacy of the proposed beamfonner.
作者 何劲 刘中
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第3期510-515,共6页 Acta Electronica Sinica
关键词 冲击噪声 波束形成l几何功率 对数矩 对称a稳定分布 impulsive noise beamforming geometric power logarithmic moment symmetric alpha stable distribution
  • 相关文献

参考文献28

  • 1Trees H L V. Optimum processing for passive sonar arrays [A]. Proc IEEE Ocean Electronics Symposium[ C]. Honolulu, HI, 1966.41 - 65.
  • 2Shor S W W.Adaptive technique to discriminate against coherent noise in a narrow-band system[J] .Journal of the Acoustical Society of America, 1966,39(12) :74 - 78.
  • 3Applebaum S P. Adaptive arrays[ J]. IEEE Transactions on Antennas Propagation, 1976,24(9) :585 - 598.
  • 4Capon J. High-resolution. frequency-wave number spectrum analysis[J] .Proceedings of IEEE, 1969,57(9) : 1408 - 1418.
  • 5Howells P W. Exploration in fixed and adaptive resolution at GE and SURC[ J]. IEEE, Transactions on Antennas Propagation, 1976,24(9) :575 - 584.
  • 6Lacoss R T. Adaptive combining of wideband array data for optimal reception[J]. IEEE Transactions on Geoscience Electronics, 1968,6(5) :78 - 86.
  • 7Applenaum S P, Chapman D J. Adaptive arrays with main beam constraints [ J ]. IEEE Transactions on Antennas Propagation, 1976,24(5) :650 - 662.
  • 8Monzingo R, Miller T. Introduction to Adaptive Arrays[ M]. NewYork: Wiley, 1980.
  • 9Frost O L. An algorithm for linearly constrained adaptive array processing[ J]. Proceedings of IEEE, 1972,60(8 ) : 926 - 935.
  • 10Widrow B, Mantey P E, Griffiths L J. Adaptive antenna systems[ J]. Proceedings of IEEE, 1967,55(12) :2143 - 2159.

二级参考文献12

  • 1Capon J.High-resolution frequency-wave number spectrum analysis[J].Proc IEEE,1969,57 (8):1408 -1418.
  • 2Van Veen B D,Buckley K M.Beamforming:a versatile approach to spatial filtering[J].IEEE Signal Processing Magazine,1988,(2):4 -24.
  • 3Shao M,Nikias C L.Signal processing with alpha-stable distributions and applications[M].New York:Wiley,1995.
  • 4Barroso A N,Moura M F.Maximum Likelihood Beamforming in the Presence of Outliers[C].VS:IEEE,1991,(2):1409-1412.
  • 5Kannan B,Fitzgerald W J.Beamforming in Additive Alpha-Stable Noiseusing Fractional Lower Order Statistics (FLOS)[C].VS:IEEE,1999,(3):5 -8.
  • 6Tsakalides P,Nikias C L.Robust Adaptive Beamforming in Alpha-Stable Noise Environments[C].VS:IEEE,1996,(5):2484 -2487.
  • 7Shao M,Nikias C L.Signal processing with fractional low order moments:stable processes and their application[J].Proc IEEE,1993,81 (7):986-1010.
  • 8Tsihrintzis G A,Nikas C L.Fast estimation of the parameters of alpha-stable impulsive interference[J].IEEE trans on SP,1996,44(6):1492 -1503.
  • 9Liu T h,Mendel J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE trans on SP,2001,49(8):1605-1613.
  • 10Haykin S.Adaptive filter theory[M].3rd ed,Englewood Cliffs,NJ:Prentice-Hall,1996.227-235.

共引文献13

同被引文献61

  • 1查代奉,邱天爽.一种基于分数低阶协方差矩阵的波束形成新方法[J].通信学报,2005,26(7):16-20. 被引量:7
  • 2张安清,邱天爽,章新华.α稳定分布的水声信号处理新方法[J].电子与信息学报,2005,27(8):1201-1204. 被引量:13
  • 3何劲,刘中.脉冲噪声环境中鲁棒的自适应波束形成方法[J].电子学报,2006,34(3):464-468. 被引量:14
  • 4Widrow B,Mantey P E,Gdffiths L J.Adaptive antenna systems[J].Proceedings of IEEE,1967,55(12):2143-2159.
  • 5Yetik I S,Nehorai A.Beamforming using the fractional fourier transform[J].IEEE.Transaction on Signal Processing,2003,51(6):1663-1668.
  • 6Guo Z H,Letaief K B.Adaptive MMSE receiver with beamforming for DS/CDMA systems[J].IEEE Transaction on Wireless Communications,2003,2(4):605-610.
  • 7Budsabathon M,Hara M,Hara Y.Optimum beamforming for pre-FFT OFDM adaptive antenna array[J].IEEE Transaction on Vehicular Technology,2004,53(4):945-955.
  • 8Palomar D P,Lagunas M A.Joint transmit-receive space-time equalization in spatially correlated MIMO channels:a beamforming approach[J].IEEE Journal on Selected Areas in Communications,2003,21 (5):730-743.
  • 9Ma W K,Ching P C,Vo B N.Crosstalk resilient interference cancellation in microphone arrays using Capon beamforming[J].IEEE Transaction on Speech and Audio Processing,2004,12(5):468-477.
  • 10Taskalides P,Nikias C L.Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments[J].IEE Proceedings-Radar,Sonar,Navigation,1999,146(2):84-93.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部