摘要
为了从一幅包含文字、公式和图形等内容的低分辨率文本图像重建高分辨率图像,提出了一种获取重建图像先验知识的新方法.利用实例图像和图像降质模型建立图像库,图像重建时,将低分辨率观测图像分成若干子块,每个子块分别从图像库中找到一块最佳匹配的高分辨率实例图像块,将这些实例图像块依次拼成一幅大图,并把该大图各点的灰度值作为重建图像各点灰度值的均值,以此先验知识采用最大后验概率(MAP)准则估计出高分辨率文本图像.实验结果表明本文的方法能够取得较好的重建效果.
In order to produce a high-resolution image from a low-resolution document image containing characters, equations and graphics, a new method to obtain the prior knowledge of the high-resolution image is proposed. Image examples and degradation model are used to generate example im- age database. A high-quality patch is assigned to each block in the observed low-resolution image, whose corresponding low-quality patch is found as the nearest neighbor in the image database. These high-quality patches are mosaicked to produce an enlarged image whose pixel intensities are taken as the mean values of the pixel intensities of the desired high-resolution image. A maximum a posteriori (MAP) estimator is used to estimate the high-resolution image. Experimental results show that the new method improves the reconstruction results significantly.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第2期191-194,共4页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(60672094).
关键词
图像超分辨率
基于实例
图像库
image super-resolution reconstruction
example-based
image database