期刊文献+

一种基于实例的文本图像超分辨率重建算法 被引量:5

Algorithm for document image super-resolution reconstruction based on examples
下载PDF
导出
摘要 为了从一幅包含文字、公式和图形等内容的低分辨率文本图像重建高分辨率图像,提出了一种获取重建图像先验知识的新方法.利用实例图像和图像降质模型建立图像库,图像重建时,将低分辨率观测图像分成若干子块,每个子块分别从图像库中找到一块最佳匹配的高分辨率实例图像块,将这些实例图像块依次拼成一幅大图,并把该大图各点的灰度值作为重建图像各点灰度值的均值,以此先验知识采用最大后验概率(MAP)准则估计出高分辨率文本图像.实验结果表明本文的方法能够取得较好的重建效果. In order to produce a high-resolution image from a low-resolution document image containing characters, equations and graphics, a new method to obtain the prior knowledge of the high-resolution image is proposed. Image examples and degradation model are used to generate example im- age database. A high-quality patch is assigned to each block in the observed low-resolution image, whose corresponding low-quality patch is found as the nearest neighbor in the image database. These high-quality patches are mosaicked to produce an enlarged image whose pixel intensities are taken as the mean values of the pixel intensities of the desired high-resolution image. A maximum a posteriori (MAP) estimator is used to estimate the high-resolution image. Experimental results show that the new method improves the reconstruction results significantly.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期191-194,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60672094).
关键词 图像超分辨率 基于实例 图像库 image super-resolution reconstruction example-based image database
  • 相关文献

参考文献10

  • 1Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technique overview [ J ]. IEEE Signal Processing Magazine, 2003,20 ( 3 ) :21 - 36.
  • 2Farsiu S, Robinson D, Elad M, et al. Advances and challenges in super-resolution [ J ]. International Journal of Imaging Systems and Technology, 2004, 14( 2 ) : 47 - 57.
  • 3Datsenko D, Elad M. Example-based single document image super-resolution: a global MAP approach with outlier rejection [J]. Multidimensional Systems and Signal Processing, 2007, 18(2/3) : 103 - 121.
  • 4Freeman W T, Jones T R, Pasztor E C. Examples-based super-resolution [ J ]. IEEE Computer Graphics Applications, 2002,22 ( 2 ) : 56 - 65.
  • 5Corduneau A, Platt J C. Learning spatially-variable filters for super-resolution of text [ C ]//IEEE International Conference on Image Processing. Genoa, Italy, 2005 : 849 - 852.
  • 6Pickup L C, Roberts S J, Zisserman A. A sampled texture prior for image super-resolution [ J ]. Advances in Neural Information Processing Systems, 2004, 16:1587 - 1594.
  • 7Park J, Kwon Y, Kim J H. An example-based prior model for text image super-resolution [C]//Proceeding of the 2005 Eighth International Conference on Document Analysis and Recognition. Seoul, Korea,2005:374 - 378.
  • 8Nene A S, Nayar S K. A simple algorithm for nearest neighbor search in high dimensions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(9) : 989 - 1003.
  • 9Capel D, Zisserman A. Super-resolution from multiple views using learnt image models [ C ]//Proceeding of International Conference Computer Vision Pattern Recognition. Santa Barbara, CA, 1998:885 -891.
  • 10Baker S, Kanade T. Limits on super-resolution and how to break them [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9 ) : 1167 - 1183.

同被引文献23

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部