期刊文献+

基于KPCA联合并联抑制神经网络变换的红外目标识别算法 被引量:2

Infrared target recognition based on joint KPCA shunting inhibition neural network transformation
下载PDF
导出
摘要 为了提高红外目标的识别性能,提出了一种KPCA联合并联抑制神经网络变换.该联合神经网络变换集成了KPCA的KHA学习机制与神经网络误差反传机制,使得KPCA与GSN分类器有机地结合起来,通过监督学习的方式引入类别信息,能够在实现数据有效降维的同时,优化主元特征的提取,从而提高算法的分类识别性能.针对典型红外军用车辆图像,采用联合算法与传统算法分别进行对比实验.实验结果表明,算法在优化特征同时,提高了目标识别性能. A novel joint KPCA (kernel principal component analysis) shunting inhibition neural network transformation is presented to improve the recognition capability of infrared target. The transformation integrates KPCA and GSN( generalized shunting neuron) classifier by combining together the learning mechanism of kernel Hebbian algorithm (KHA) based on neural network and a back propagation learning algorithm. Then the interclass information is introduced through the supervised learning manner, and better dimensionality reduction and a higher degree of discriminability can be achieved. The joint method was applied to typical infrared military vehicles in comparison with several traditional methods. Experimental results show that the method can offer more powerful target recognition with optimized feature extraction.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期329-334,共6页 Journal of Southeast University:Natural Science Edition
关键词 KPCA KHA 广义并联抑制神经元 红外目标 kernel principal component analysis kernel Hebbian algorithm generalized shuntingneuron infrared target
  • 相关文献

参考文献12

  • 1Kim B G, Park D J. Novel target segmentation and tracking based on fuzzy membership distribution for vision-based target tracking system [J]. Image and Vision Computing,2006,24(12) : 1319 - 1331.
  • 2Shaik J S, Iftekharuddin K M. Automated tracking and classification of infrared images [ C ]//Proceedings of the International Joint Conference on Neural Networks. Oregon, Portland, 2003,2 : 1201 - 1206.
  • 3Sun S G, Park H W. Segmentation of forward-looking infrared image using fuzzy thresholding and edge detection[J]. Optical Engineering, 2001,40 (11 ) : 2638 - 2645.
  • 4Chan L A, Der S Z, Nasrabadi N M. A joint compression-discrimination neural transformation applied to target detection[J]. IEEE Trans on System,Man and Cybernetics-Part B: Cybernetics, 2005,35 ( 4 ) : 670 - 681.
  • 5Smola S A, Mtiller K R. Nonlinear component analysis as a kernel eigenvalue[J]. Neural Computation, 1998, 10(5 ) : 1299 - 1319.
  • 6Arulampalam G, Bouzerdoum A. A generalized feedforward neural network architecture for classification and regression[J]. Neural Networks,2003, 16(sup) :561 - 568.
  • 7Cao L J, Chua K S,Chong W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine [J]. Neurocomputing, 2003,55 (9):321 -336.
  • 8Zhu B, Jiang L, Luo Y G, et al. Gabor feature-based apple quality inspection using kernel principal component analysis [J]. Journal of Food Engineering, 2007, 81(4) :741 -749.
  • 9Xie X D, Lam K M. Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image [J]. IEEE Trans Image Processing, 2006,15(9) : 2481 -2492.
  • 10Liu C J. Gabor-based kernel PCA with fractional power polynomial models for face recognition [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence ,2004, 26(5) : 572-581.

同被引文献16

  • 1WITTENIH,FRANKE.数据挖掘:实用机器学习技术[M].董琳,邱泉,等译.北京:机械工业出版社,2006.
  • 2Shaw, A. K. HRR-ATR Using Eigon-templates with Noise Observations in Unknown Target Scenario[C]. Algorithms for Synthetic Aperture Radar Imagery. Washington, SPIE, 2000.448 - 459.
  • 3Scholkopf, B. Nonlinear Component Analysis as Kernel Eigenvalue Problem[ J ]. Neural Computation, 1998, 10 (5) : 1299-1319.
  • 4Mithchell, Richard A. , John J. Wisterkamp. Robust Statistical Feature Based Aircraft Identification[J]. IEEE Transaction on Aerospace and Electronics Systems Magazine, 1999, 35(3) : 1077-1094.
  • 5XIONG H. L. , M. N. S. Swamy, M. O. Ahmad. Optimizing the Kernel in the Empirical Feature Space[J]. IEEE Trans on Neural Networks, 2005, 16(2) :460 -474.
  • 6grim, K. I. , M. O. Franz, B. Scholkopf. Iterative Kernel Principal Component Analysis for Image Modeling[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005, 27(9) : 1351 -1366.
  • 7Muller, K. R. , S. Mika, G. Ratsch, et al. An Introduction to Kernel-based Learning Algorithms [J]. IEEE Transactions on Neural Networks, 2001, 12(2) : 181 -201.
  • 8DunhamMH.数据挖掘教程[M].北京:清华大学出版社,2006.
  • 9陈渤,刘宏伟,保铮.一种融合核优化算法[J].西安电子科技大学学报,2007,34(4):509-513. 被引量:5
  • 10潘大夫,汪渤.一种基于外部轮廓的数字验证码识别方法[J].微计算机信息,2007(25):256-258. 被引量:23

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部