期刊文献+

n阶脉冲泛函微分包含的非共振问题

Nonresonance n-th order impulsive functional differential inclusions
下载PDF
导出
摘要 在混合Lipschitz和Carathéodory条件下,使用恰当的多值混合不动点定理,建立了n阶脉冲泛函微分包含解存在的充分条件.然后,利用锥理论和上下解讨论了这类问题的极值解. This paper considers the existence of solution for n-th order impulsive functional differential inclusions hy appropriate multivalued fixed point theorem in mixed Lipschitz and Caratheodory, and obtains the extremal solutions of this problem hy the cone and upper and lower solutions.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 2008年第1期19-24,共6页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金资助项目(60574025) 湖北省自然科学基金资助项目(2004ABA055)
关键词 脉冲泛函微分包含 非共振问题 不动点定理 上下解 impulsive functional differential inclusions nonresonance fixed point theo-rem cone upper and lower solution
  • 相关文献

参考文献9

  • 1Aubin J, Cellina A. Differential Inclusions[M]. New York: Springer-Verlag, 1984.
  • 2Benchohra M, Graef J R, Henderson J, et al. Nonresonance impulsive higer order functional nonconvex-valued differntial inclusions[J]. Elec J Qual Theo Diff Equa, 2002,13 : 1-13.
  • 3Benchohra M, Graef J R, Ouahabi A. Nonresonance impulsive functional differntial inclusions with variable times[J]. Comp Math Appl, 2004,47:1 725-1 737.
  • 4Dhage B C, Holambe T L, Ntouyas S K. The method of upper and lower solutions for Caratheodory n th order clifferential inclusions[J]. Elec J Diff Equa,2004,8:1-9.
  • 5Dhage B C, Graef J R. On boundary-value problems for second order perturbed differential inclusions[J]. Applicable Analysis, 2005,84(9) : 953-970.
  • 6Lasota A, Opial Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations[J]. Bull Acad Pol Sei Set Sci Math Astronom Phys, 1965, 13: 781-786.
  • 7Dhage B C. Muhivalued mappings and fixed points Ⅱ[J]. Tamkang J Math,2006,37:27-46.
  • 8Dhage B C. A fixed point theorem for multi-valued mappings in ordered Banach spaces with applications[J]. Panamerican Math J,2005,15:15-34.
  • 9Castaing C, Valadier M. Convex Analysis and Measurable Multifunctions[M]. Berlin:Spriner-Verlag, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部