摘要
设Nn+p(c)为n+p维的常曲率空间,Mn为Nn+p(c)中的n维紧致极小子流形,Yau得到了一个Simons不等式相对应的结论,本文将常曲率空间的类似问题推广到局部对称空间中,得到了两个主要定理.
Let M^n be an n- dimensional compact minimal submanifold immersed in a manifold N^n-p with constant curvature c. Yau obtains an inequality opposite to that of Simons. In this paper ,the similar problems in space of constant curvature are popularized in the space of locally symmetry.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
2008年第1期29-31,共3页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金资助项目(10571068)
关键词
局部对称
极小子流形
共形平坦
全测地
locally symmetric
minimal submanifold
conformally flat
totally geodesic