期刊文献+

磁光阱中铯冷原子碰撞损失率系数的测量 被引量:4

Measurement on Collisional Loss Rate Coefficient of Cesium Cold Atoms in a Magneto-Optical Trap
原文传递
导出
摘要 利用磁光阱(MOT)技术获得了铯冷原子。通过观测磁光阱在装载过程中冷原子云荧光强度的变化,测量了不同俘获光功率下铯冷原子的碰撞损失率系数。在单个阱中完成了对碰撞损失率系数的测量。同时研究发现铯冷原子的碰撞损失率系数依赖于俘获光功率并随其增加而增大,该实验结果与Gallagher-Pritchard理论模型给出的结果一致,验证了辐射逃逸和精细结构交换碰撞是造成磁光阱中原子损失的主要原因,对于进一步提高磁光阱的俘获效率有重要意义。 Cold cesium atoms are obtained using magneto-optical trap (MOT) technology. Under different trapping laser powers, the collisional loss rate coefficients for cold cesium atoms were measured by observing the fluorescence intensity variance of cold atoms clouds when MOT was loading. The experiment was achieved in a single trap, thus it is convenient and easy. In addition, it is found that the collisional loss rate coefficient depends on and increases with trapping laser power, which is in agree with the Gallagher-Pritchard theoretical model. It validates that the radiative escape and fine-structure-changing collisions are the main reasons for cold atoms lossing in a MOT. The results are of significance for further improvement on trapping efficiency of MOT.
出处 《中国激光》 EI CAS CSCD 北大核心 2008年第2期221-224,共4页 Chinese Journal of Lasers
基金 国家973计划(2006CB921603) 国家自然科学基金(10574084 60678003) 国家重大基础研究前期研究专项(2005CCA06300)资助课题
关键词 原子与分子物理学 磁光阱 碰撞损失率 荧光探测 冷原子 atomic and molecular physics magneto-optical trap collisional loss rate fluorescence detection cold atom
  • 相关文献

参考文献17

二级参考文献68

  • 1BIANFenggang JIANGHaifeng WEIRong ZHOUShanyu WANGYuzhu.Phase Variations and Phase Shift in a TE011 Mode Microwave Cavity Used for in a Miniature Rb Fountain Frequency Standard[J].Chinese Journal of Electronics,2005,14(2):370-372. 被引量:1
  • 2Wang H,Phys Rev A,1996年,53卷,R1216页
  • 3Wang Yiqiu,he Fifth Symposium on FrequencyStandard and Metrology,1995年
  • 4Zhu M,Opt Lett,1993年,18卷,1186页
  • 5王义遒,物理,1990年,19卷,389-394449-460页
  • 6Hou Jidong,Chin Phys Lett,1998年,15卷,5期,335页
  • 7Gan Jianhua,Chin Phys Lett,1996年,13卷,11期,821页
  • 8WEINSTEIN J D, DECARVALHO R, et al. Magnetic Trapping of Calcium Monohydride Molecules at Millikelvin Temperatures[J]. Nature, 1998, 395: 148.
  • 9BETHLEM H L, et al. Electrostatic Trapping of Ammonia Molecules [J]. Nature, 2000, 406: 491.
  • 10CHIN C, VULETIC V, KERMAN A J, et al. Sensitive Detection of Cold Cesium Molecules Formed on Feshbach Resonances[J]. Phys Rev Lett, 2003, 90: 033201.

共引文献28

同被引文献28

  • 1R. L. Targat, X. Baillard, M. Fouche et al.. Accurate optical lattice clock with ^87Sr atoms [J]. Phys. Rev. Lett., 2006, 97(13) : 130801.
  • 2H. Katori, M. Takamoto. Ultrastable optical clock with neutral atoms in an engineered light shift trap [J]. Phys. Rev. Lett., 2003, 91(17): 173005.
  • 3X. H. Hu, X, F. Zhang, D. Zhao a al.. Dynamics and modulation of ring dark solitonsin two dimensional Bose Einstein condensates with tunable interaction [J]. Phys. Rev. A, 2009, 79(2):023619.
  • 4X. X. Liu, H. Pu, B. Xiong et al.. Formation and transformation of vector solitons in two species Bose-Einstein condensates with a tunable interaction [J]. Phys. Rev. A, 2009, 79(1): 013423.
  • 5X. F. Zhang, Q. Yang, J. F. Zhang et al.. Controlling soliton interactions in Bose-Einstein condensates by synchronizing the feshbach resonance and harmonic trap [J]. Phys. Rev. A, 2008, 77(2) : 023613.
  • 6B. He, Q. Sun, P. Liet al.. Magnetic quantum phase transition of cold atoms in an optical lattice [J]. Phys. Rev. A, 2007, 76(4): 043618.
  • 7W. D. Phillips, H. Metcalf. Laser deceleration of an atomic beam [J]. Phys. Rev. Lett. , 1982, 48(9): 596-599.
  • 8F. Lison, P. Schuh, D. Haubricb et al.. High-brilliance Zeeman-slowed cesium atomic beam [J]. Phys. Rev. A, 1999, 61(1): 013405.
  • 9Y. B. Ovehinnikovl. A permanent Zeeman slower for Sr atomic clock [J].The European Physical Journal Special Topics, 2008, 163(1): 95--100.
  • 10K. J. Gunter. Design and implementation of a Zeeman slower for 87Rb [R]. Ecole Normale Superieur, Paris, 2004. 17-20.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部