期刊文献+

双芯复合格点光子晶体光纤的负色散特性 被引量:13

Negative Dispersion Properties of Photonic Crystal Fiber with Dual Core and Composite Lattice
原文传递
导出
摘要 介绍了一种双芯复合格点负色散光子晶体光纤,其包层是由连续电介质纯硅背景上挖出的两种大小不同的空气孔构成,芯区是由掺锗的高折射率的材料构成。为了实现负色散,还移去了包层中的一圈空气孔。采用频域有限差分法对其负色散特性进行分析表明,通过调整空气孔间距和两种空气孔的尺寸,可以得到不同程度的宽带负色散。当内芯半径取0.95μm,孔间距取2.15μm,大空气孔直径取1.9μm,小空气孔直径取1.1μm时,可在1.55μm处实现宽带负色散,其半峰全宽超过了200 nm。这种光纤的包层中空气孔呈六边形分布,空气孔的尺寸均大于1μm,降低了制作的难度。这种光纤可以用于波分复用光纤通信系统中的宽带色散补偿。 A negative dispersion photonic crystal fiber (PCF) with dual core and composite lattice is proposed. The cladding is composed of two different air holes based on pure silica, and the inner core is formed with high effective index material doped with germanium. In order to realize negative dispersion, a ring of air holes in the cladding is removed. Using the finite difference frequency domain algorithm, the negative dispersion properties is analyzed. Results show that broadband negative dispersion with different levels can be achieved by optimizing air-hole pitch and two air-hole diameters. Broadband negative dispersion with full width at half maximum exceeding 200 nm is realized at 1.55 μm wavelength when the radius of the inner core, the air-hole pitch, the diameter of the larger hole and the diameter of the smaller hole is 0.95 μm, 2.15 μm, 1.9 μm, 1.1 μm respectively. To decrease the fabrication difficulty, air holes of more than 1 μm and hexagonal lattice are adopted. So this fiber can be used for broadband dispersion compensation in wavelength-division multiplexing optical fiber communication systems.
出处 《光学学报》 EI CAS CSCD 北大核心 2008年第1期27-30,共4页 Acta Optica Sinica
基金 山西省自然科学基金(20041036)资助课题
关键词 光纤光学 光子晶体光纤 负色散 频域有限差分方法 fiber optics photonic crystal fiber (PCF) negative dispersion finite difference frequency domain (FDFD) method
  • 相关文献

参考文献19

  • 1M. Artiglia. Comparison of dispersion compensation techniques for lightwave systems[C]. OFC '98, San Jose, 1998, Thv2: 364-365
  • 2Y. K. Park, P. D. Yeates, J. M. P. Delavauxet al.. A field demonstration of 20 Gb/s capacity transmission over 360 km installed standard (non-DSF) fiber[J]. IEEE Photon. Technol. Lett., 1995, 7(7):816-818
  • 3S. Watanabe, T. Naito, T. Chikama. Compensation of chromatic dispersion in a single mode fiber by optical phase conjugation[J]. IEEE Photon. Technol. Lett. , 1993, 5(1):92-95
  • 4黄俊,黄德修,李宏.通信系统中色散补偿光纤的研究[J].光学与光电技术,2005,3(4):11-12. 被引量:8
  • 5J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett. , 1996, 21(19): 1547-1549
  • 6J. Broeng, D. Mogilevstev, S. E. Barkou et al.. Photonic crystal fibers:a new class of optical waveguides[J]. Opt. Fiber Technol., 1999, 5(3): 305-330
  • 7王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展[J].中国激光,2006,33(1):57-66. 被引量:72
  • 8T. A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single-material fibers [J]. IEEE Photon. Technol. Lett. , 1999, 11(6): 674-676
  • 9F. Gerome, J.-L. Auguste, J.-M. Blondy. Very high negative chromatic dispersion in a dual concentric core photonic crystal fiber[C]. OFC '04, 2004, Los Angeles, California, WA2
  • 10Y. Ni, L. Zhang, L. An et al.. Dual-core photonic crystal fiber for dispersion compensation[J]. IEEE Photon. Technol. Lett., 2004, 16(6): 2516-1518

二级参考文献145

共引文献102

同被引文献163

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部