期刊文献+

基于支持向量机的轻度认知功能障碍诊断方法 被引量:1

Mild Cognitive Impairment Diagnostic Method Based on SVM
下载PDF
导出
摘要 轻度认知功能障碍(MCI)是正常老化向痴呆转变的过渡阶段,目前被认为是老年痴呆症(AD)的一种先期征兆,其相关研究对于AD的早期诊断与干预具有重要意义。MCI的诊断一般通过认知和记忆的测查进行,各项指标均为正常或MCI状态时可直接确诊,如果不一致则需医生依据经验进一步判断。本研究从已确诊的被试中训练得出支持向量机分类模型,然后对需要医生诊断的被试做预测,实验表明,以医生的诊断为准,预测的符合率最高可达85.7%,有助于MCI的计算机辅助诊断。 Mild Cognitive Impairment (MCI), the transitional stage from normal aging to the Alzheimer Disease (AD), is now regarded as the early stage of AD. and the research on MCI is significant for the early diagnosis and therapy of AD. Generally cognition and memory function examination are performed in diagnosis of MCI. It is easy to diagnose subjects as normal or MCI when all test indexes are identical, but the final diagnosis needs to be made by doctors according to their experiences if there is any difference among indexes. In this paper, a classifier was trained based on support vector machine (SVM) using the data of the subjects with confirmed diagnosis, and then to predict the state of those undiagnosed. The experiment showed the highest prediction accuracy achieved 87.6% according to doctors' diagnoses, and the method can be used in computer-aided diagnosis of MCI.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2008年第2期229-233,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60472017,30670699)
关键词 轻度认知功能障碍 支持向量机 老年痴呆症 mild cognitive impairment support vector machines Alzheimer disease
  • 相关文献

参考文献13

  • 1苏润萍,董选.轻度认知损伤研究进展[J].医学综述,2007,13(4):272-274. 被引量:7
  • 2Peterson R C. Aging mild cognitive impairment and Alzheimer' s disease [J]. Dementia, 2000, 18: 789-805.
  • 3Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical charcterization and outcome, [ J ]. Arch Neurol, 1999,56: 303- 308.
  • 4Sitoh YY, Sahadevan S. Clinical significance of cerebral white matter lesions in older Asians with suspected dementia [ J]. Ageing, 2004, 33(1): 67-71.
  • 5丁蓓,凌华威,陈克敏.轻度认知功能障碍的神经影像学研究进展[J].国外医学(临床放射学分册),2007,30(2):77-80. 被引量:15
  • 6Vapnik VN. An overview of statistical learning theory [ J ]. IEEE Transactions on Neural Networks, 1999, 10: 988- 999.
  • 7Mavroforakis ME, Theodoridis S. A geometric approach to Support Vector Machine ( SVM ) classification [J].IEEE Transactions on Neural Networks, 2006, 17(3) :671 - 682.
  • 8Tax MJ, Duin PW. Support Vector Data Description [J]. Machine Learning, 2004, 54: 45-66.
  • 9Scholkopf B, Platt JC, Taylor JS, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13 (7) : 1443 - 1471.
  • 10Chang CC, Lin CJ. LIBSVM: a library for support vector machines [ EB/OL]. http://www. csie. ntu. edu. tw/- cjlin/libsvm. 2007-04 -01/2007-05-07.

二级参考文献51

  • 1谭纪萍,王鲁宁,王炜.老年人轻度认知功能损伤危险因素的病例对照研究[J].中华流行病学杂志,2006,27(1):55-57. 被引量:42
  • 2Rasquin SM,Lodder J,Ponds RW,et al.Cognitive functioning after stroke:a one-year follow-up study[J].Dement Geriatr Cogn Disord,2004,18(2):138-144.
  • 3Argyriadou S,Vlachonikolis I,Melisopoulou H,et al.In what extent anemia coexists with cognitive impairment in elderly:a cross-sectional study in Greece[J].BMC Fam Pract,2001,2:5.
  • 4Tervo S,Kivipelto M,Hanninen T,et al.Incidence and risk factors for mild cognitive impairment:a population based three year follow-up study of cognitively healthy elderly subjects[J].Dement Geriatr Cogn Disord,2004,17(3):196-203.
  • 5Knopman D,Boland LL,Mosley T,et al.Cardio vascular risk factors and cognitive decline in middle aged adults[J].Neurology,2001,56(1):42-48.
  • 6Petersen RC,Doody R,Kurz A,et al.Current concepts in mild cognitive impairment[J].Arch Neurol,2001,58(2):1985-1992.
  • 7Golob EJ,Johnson JK,Starr A.Auditory event-related potentials during target detection are abnormal in mild cognitive impairment[J].Clin Neurophysiol,2002,113(1):151-161.
  • 8Jack CR Jr,Petersen RC,Xu Y,et al.Rates of hippocampal atrophy correlate with change in clinical status in aging and AD[J].Neurology,2000,55(4):484-489.
  • 9Tabert MH,Albert SM,Borukhova-Milov L,et al.Functional deficits in patients with mild cognitive impairment:prediction of AD[J].Neurology,2002,58(5):758-764.
  • 10Luis CA,Loewenstein DA,Acevedo A,et al.Mild cognitive impairment:directions for future research[J].Neurology,2003,61 (4):438-444.

共引文献43

同被引文献9

  • 1Shi S,Gu JH,Yu HL.Hebei Gongye Daxue Xuebao 2008;37(1 ):82-85
  • 2Vapnik Vladimir N. The Nature of Statistical Learning Theory. New-York: Springer-Verlag 1999:83-209
  • 3Cheng B,Liu GY.Jisuanji Yingyong 2008;28(2):333-336
  • 4Lei M,Wang ZZ.Zhongguo Kangfu Yixue Zazhi 1999;14(6):264-266
  • 5Daubechies I. Ten lectures wavelets. CBMS SIAM 1994;61 : 194-202
  • 6Lv SEWang XK,Tang YY, et al.Zhongguo Shengwu Yixue Gongcheng Xuebao 2008;27(2):229-233
  • 7Ashok M. Powered Upper Limb Prostheses-Control Implementation and Clinical Application. New-York: Springer-Verlag 2004:17-96
  • 8师硕,顾军华,于洪丽.基于小波变换的表面肌电信号的消噪处理[J].河北工业大学学报,2008,37(1):82-85. 被引量:5
  • 9雷敏,王志中.基于学习矢量量化神经网络的表面肌电信号的模式分类研究[J].中国康复医学杂志,1999,14(6):264-266. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部