期刊文献+

基于非负稀疏编码和RBPNN的掌纹图像识别方法 被引量:2

The Method of Palmprint Recognition Based on Non-negative Sparse Coding and Radial Basis Probabilistic Neural Network
下载PDF
导出
摘要 主要探讨了一种新颖的基于非负稀疏编码(NNSC)和径向基概率神经网络(RBPNN)模型的掌纹图像识别方法。使用NNSC算法可以成功地提取掌纹图像的特征,利用RBPNN模型可以有效、快速地实现掌纹图像的分类。与RBFNN和BPNN模型相比,实验结果表明RBPNN模型具有更高的识别率和更好的分类能力。 The paper mainly discusses a novel palmprint recognition method based on Non-negative Sparse Coding (NNSC) and Radial Basis Probabilistic Neural Network (RBFNN). Palmprint features can be extracted successfully by using the algorithm of NNSC, and the classification task can be implemented efficiently and fast by the RBPNN model proposed. Moreover, compared with the classification methods of Radial Basis Function Neural Network(RBFNN) and BPNN, experimental results also show that the RBPNN achieves higher recognition rate and better classification efficiency.
作者 尚丽 陈杰
出处 《苏州市职业大学学报》 2008年第1期65-69,共5页 Journal of Suzhou Vocational University
基金 中国博士后科学基金资助(20060390108)
关键词 非负稀疏编码(NNSC) 径向基概率网络(RBPNN) 掌纹图像 图像识别和分类 Non-negative Sparse Coding (NNSC) Radial Basis Probabilistic Neural Network (RBPNN) palmprint images image recognition and calssification
  • 相关文献

参考文献5

  • 1ZHANG D,,HONG W,YOU J.Online palmprint identification[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003
  • 2CONNIE A T,TEOH A,GOH M,et al.Palmprint recognition with PCA and ICA[].Image and Vision Computing.2003
  • 3KUMAR,SHEN H C.Recognition of Palmprints Using Wavelet-based Features[].ProcIntlConfSysCybern(SCI-).2002
  • 4HOYER P O.Non-negative sparse coding[]..2002
  • 5HUANG D S.Radial Basis Probabilistic Neural Networks:model and application[].International Journal of Pattern Recognition and Artificial Intelligence.1999

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部