期刊文献+

整体变分最小化方法在图像处理中的应用 被引量:2

Image Processing Methods Based on Total Variation
下载PDF
导出
摘要 研究了整体变分模型在图像处理应用中的原理及当前的主要应用领域(图像去噪、去模糊、图像分解、图像修复),比较了整体变分法求解的几种数值方法,在此基础上,总结了整体变分模型在图像处理中的优缺点,对整体变分法在图像处理中的应用作了进一步的展望. The paper summarizes the principle and application of the total variation model in image processing. The application includes image denoising, deblurring, image decomposition and inpainting. Then it compares the main relevant numerical methods, points out the merits and defects and finally predicts the future work of total variation in image inpainting.
出处 《云南民族大学学报(自然科学版)》 CAS 2008年第2期176-180,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 云南省教育厅科研基金资助项目(5Y0590D)
关键词 整体变分 图像处理 数值方法 total variation image processing numerical method
  • 相关文献

参考文献9

  • 1GONZALEZ R C,WOODS R E. Digital Image Processing Using MATLAB[ M]. USA: Prentice Hall Press, 1996.
  • 2RUDIN L, OSHER S, FATEMI E. Nonlinear Total Variation Based Noise Removal Algorithms[J]. Physica D, 1992,60:259 - 268.
  • 3CHAMBOLLE A, LIONS P. Image Recovery via Total Variation Minimization and Related Problems [ J ]. Numer Math, 1997, 76:167 - 188.
  • 4STRONG D, CHANT. Edge - preserving and Scale - dependent Properties of Total Variation Regularization [ J ]. Inv Probl, 2003,19 : 165 - 187.
  • 5VOGEL C R, OMAN M E. Iterative Methods for Total Variation Denoising[ J]. Society for Industrial and Applied Mathematics Journal Sciety Computer. 1996 (7) :27 -238.
  • 6CHAN T, GOLUB G, MULET P. A Nonlinear Primal - dual Method for Total Variation - based Image Restoration[J]. SIAM J Sci Comp, 1999,20:1964 - 1977.
  • 7CHAN T, WONG C. Total Variation Blind Deconvolution [ J ]. IEEE Trans Image Process, 1998,7:370 -375.
  • 8BERTALMIO M, SAPIRO G, CASELLES V. Image Inpainting[ C]//In Proc 27th Ann Conf on Comput Graph & Interactive Tech,2000:417 -427.
  • 9VESE L, OSHER S. Modeling Textures with Total Variation Minimization and Oscillating Patterns In Image Processing[J]. J Math Imaging Vision,2004,20:7 - 18.

同被引文献10

  • 1RUDIN L,OSHER S,FATEMI E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(1-4):259-268.
  • 2RUDIN L,OSHER S.Total variation based image restoration with free local constraints[C]//Proc 1st IEEE Int Conf Image Process,Austin,TX:IEEE Press,1994,1:31-35.
  • 3COBSON D,VOGEL C.Convergence of an iterative method for total variation denoising[J].SIAM Journal of Numerical Analysis,1997,34(5):1779-1791.
  • 4CHAN T F,OSHER S,SHEN J.The digital TV filter and nonlinear denoising[J].IEEE trans on Image Processing,2001,10(2):231-241.
  • 5NAGAO M,MATSUYAMA T.Edge preserving smoothing[J].Computer Graphics and Image Processing,1979,9:394-407.
  • 6杨枝灵,王开.VisualC++获取处理及实践应用[M].北京:人民邮电出版社,2003.
  • 7谢俊喜.基于数字图像处理的条形码识别方法与应用研究[D].长沙:中南大学,2008.
  • 8郭敏,任娜.基于小波变换与块分割的多聚焦图像融合[J].云南大学学报(自然科学版),2008,30(3):251-255. 被引量:8
  • 9许锐.利用颜色和纹理特征的图像检索技术研究[J].贵州大学学报(自然科学版),2008,25(4):354-358. 被引量:3
  • 10肖亮,吴慧中,韦志辉,汤淑春.基于总体变差模型的数字滤波器设计及其性能研究[J].信号处理,2003,19(3):247-251. 被引量:9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部