期刊文献+

关于六阶图与星的笛卡儿积交叉数 被引量:2

On the crossing number of products of a graph of order 6 and the star
下载PDF
导出
摘要 通过在完全图K4的某一条边上增加2个顶点得到一个六阶图F.分别连结F六个顶点与其他n个顶点得到一类特殊的图Hn.证明Hn的交叉数为Z(6,n)+n并由此确定且证明F×Sn的交叉数为Z(6,n)+2n. The crossing number of Cartesian products of the graph order 6 and star, presently, was proved only for that of several graphs order 6 which are few edges and star. We add two vertices to an edge of K4 to obtain a graph F which is order 6. By connecting the 6 vertices of graph F to other n vertices will obtain a special family of graph denoted by Hn. In this paper, we proved that the crossing number of Hn is Z(6, n)+n and thereout we attested the crossing number of F×Sn is Z(6, n)+2n.
出处 《湖南文理学院学报(自然科学版)》 CAS 2008年第1期16-19,共4页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 国家自然科学基金资助项目(10771062) 教育部"新世纪优秀人才支持计划"项目
关键词 画法 交叉数 笛卡儿积 Graph Drawing Crossing number Star Cartesian products
  • 相关文献

参考文献3

二级参考文献22

  • 1RLEsc M.The crossing number of K5×Pn[J].Tatra Mountains Math Public,1999,(18):63-68.
  • 2ERDǒs P GUG R K.Crossing number problems[J].Am Math Maonth,1973,80:52-58.
  • 3[1]J.A.Bondy.U.S.R.Muty.Graph Theory with Appplication[M],London,1976.
  • 4[2]L.W.Beineke,R.D.Ringeisen,On the crossing numbers of products of cycles and graphs of order four[J].J.Graph Theory 1980,4:145~155.
  • 5[3]P.Erdǒs,and R.K.Gug.Crossing number problems[J].Am.Math.Maonth,1973,80:52~58.
  • 6[4]D.J.Kleitman,The crosing number of K5,n[J].Combinatorial Theroy 1970,9:315~323.
  • 7[5]M.R.Garey and D.S.Johnson,Crossing number is NP-complete[J].SIAM J.Algebraic.Discrete Methods,1993,4:312~316.
  • 8[6]M.Klesc,On the crossing number of Cartesian products of stars and paths or cydes[J].Math.Slovaca,1991,41:113~120.
  • 9[7]K.Asano.The crossing number of K1,3,n and K2,3,n[J].J.Graph Theory,1986,10:1-8.
  • 10[8]M.Klesc,The crossing numbers of products of Paths and stars with 4-vertex graphs[J].J Graph Thepry,1994,18:605~611.

共引文献8

同被引文献11

  • 1周智勇,肖文兵,黄元秋.星图S_5及5个六阶图与路的笛卡儿积图的交叉数[J].湖南文理学院学报(自然科学版),2007,19(1):1-4. 被引量:5
  • 2J.A. Bondy, U.S.R. Murty. Graph theory with application. New York: Macmillan London and Elsevier, 1979.
  • 3Garey M R, Johnson D S. Crossing number is NP-complete. SIAM J. Alg. Disc.Meth., 1983, 4(3):312-316.
  • 4Kleitman D J. The crosing number of K5,n. J.Graph Series B, 1970, 9:315-323.
  • 5Huang Y Q, Zhao T L. The crossing number of K1,4,n. Disc.Math, 2008, 308(9):1634-1638.
  • 6BOKAL D. On the crossing numbers of Cartesian products with trees. J Graph Theory, 2007, 56:287-300.
  • 7M. Klesc. The join of graphs and crossing nembers. Discrete Mathematics, 2007, (23), 349-355.
  • 8M. Klesc. The crossing numbers of products of path and stars with 4-vertex graphs [J]. J.Graph Theory. 18(6)(1994), 605-614.
  • 9M. Klesc. The crossing numbers of Cartesian products of paths with 5-vertex graphs [J].Discrete Mathematics. 233(2001), 353-359.
  • 10吕胜祥,黄元秋.K_(2,4)×S_n的交叉数[J].系统科学与数学,2010,30(7):929-935. 被引量:11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部