期刊文献+

新的改进遗传算法在等距型面误差测量中的应用(英文)

New advanced genetic algorithm for measurement error of isometric polygonal curve
下载PDF
导出
摘要 由于等距型面轮廓曲线为非圆曲线的一种,对其参数的测量和误差计算比较困难,因此,设计了一种新的遗传算法用来测量等距型面的廓形参数和误差.标准遗传算法的控制参数为常数,而我们将变异概率设计为随遗传代数而变化的函数,设计了改进的遗传算法,并进行了实例计算.计算结果表明,该改进的遗传算法可以很好的结果等距型面的检测问题. Because the outlining curve of isometric polygonal is the un-rounded curves, it is difficult to measure its parameters and calculate the errors. Therefore, we design a new improved genetic algorithm for calculating the optima parameters and errors of isometric polygonal curve according to the measuring data on coordinate measuring machine. But, we think the efficiency of standard genetic algorithm is too low which wastes much time on evolution. In order to improve its efficiency, we take this strategy which the constant crossover parameter and mutation parameter are changed to the dynamic crossover parameter and mutation parameter which are depended by two functions about the evolutionary generations. With the strategy, we design a new improved genetic algorithm and built a mathematic model which solved the optimization problem of the isometric polygonal curve parameters and errors calculating. From analysis and comparison of results of numerical experiments for this problem, it indicates that the new improved genetic algorithm and this mathematic model can solve this problem well.
出处 《湖南文理学院学报(自然科学版)》 CAS 2008年第1期80-83,共4页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 遗传算法 测量 等距型面 误差 Genetic Algorithm Measurement IsometricPolygonal Curve Error
  • 相关文献

参考文献2

二级参考文献16

  • 1Poa-Sepulveda C A, Pavez-Lazo B J. A solution to the optimal power flow using simulated annealing. Electrical Power & Energy System,2003,25(1):47-47
  • 2Momoh J A, Zhu J Z. Improved interior point method for OPF problems. IEEE Transactions on Power System,1999,14(3):1114-1120
  • 3Alsac O, Stott B. Optimal load flow with steady state security. IEEE Trans. on Power Apparat.Syst.,1974,5:170-195
  • 4Reid G.F, Hasdorf L. Economic dispatch using quadratic programming. IEEE Trans. on Power Apparat.Syst,1973,2015-2023
  • 5Stott B, Hobson E. Power system security control calculation using linear programming. IEEE Trans. Power Apparat.Syst. pt. I and II,1978,9:1713-1731
  • 6Sun D I, Ashley B, Brewer B, et al. Optimal power flow by Newton approach. IEEE Trans. on Power Apparat. Syst,1984:2864-2880
  • 7Wei H, Sasaki H, Kubokawa J, et al. An interior point nonlinear programming for optimal power flow problem with a novel data structure. IEEE Trans. on Power Syst., 1998,8:1211-1218
  • 8Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks,1995,4:1942-1948
  • 9Kennedy J, Eberhart R. A new optimizer using particle swarm theory. Proceeding 6th International Symposium on Micro Machine and Human Science, IEEE Service Center,Nagoya,1995,1:39-43
  • 10Gaing Z L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Transactions on Power System,2003,18(3):1187-1195

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部