期刊文献+

基于神经网络的重大危险源动态分级研究 被引量:20

Study in Dynamic Risk Classification of Major Hazards Based on Neural Networks
下载PDF
导出
摘要 利用自组织神经网络对重大危险源进行动态分级研究,介绍了神经网络的模式聚类即分级法的自组织学习过程和算法,克服了以往危险源分级方法的某些局限性。 By Using self-organized neural network, so called Adaptive Resonance Theory(ART),the dynamic risk classification of major hazards was studied,at the same time the process and algorithm of the dynamic classification method were introduced,by which some shortcomings of traditional means by fixed risk grades were overcome.The method has been simulated on a computer,the results showed that the method is rational and feasible.
机构地区 东北大学
出处 《中国安全科学学报》 CAS CSCD 1997年第2期6-9,22,共5页 China Safety Science Journal
关键词 自组织神经网络 重大危险源 动态分级 工业安全 ART(Adaptive Resonance Theory) neural network Major hazards Dynamic classification
  • 相关文献

同被引文献163

引证文献20

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部