期刊文献+

多Agent模糊概率信念逻辑 被引量:3

Multi-Agent Fuzzy Probability Belief Logic
下载PDF
导出
摘要 在经典信念形式化研究中,信念在某一可能世界中的真值取值范围是{0,1}。基于新模糊集合论给出信念真值的模糊真值计算方法,将信念的真值取值范围推广到[0,1]。在这样模糊逻辑框架下,将广义概率Aumann语义推广到广义模糊概率Aumann语义,从而建立多Agent模糊概率信念逻辑。在该逻辑中,给出多Agent模糊概率信念逻辑的语法和语义,并且证明了该逻辑系统的可靠性。 In classical research on formalization of belief, the truth value range of belief in a possible world is {0, 1 } o This paper presents a method of computer fuzzy truth based on new fuzzy set theory, and generalizes the truth value range to [0,1]. Under this fuzzy logic frame, the general probability Aumann semantics is generalized to general fuzzy probability Aumann semantics, and thus multi-agent fuzzy probability belief logic is built. This belief logic presents syntax and semantics of multi-agent fuzzy probability belief logic, and prove the soundness of this logic.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2008年第1期150-153,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60373079) 福州大学校人才基金资助项目(XRC-0618)
关键词 多AGENT系统 信念逻辑Kripke语义 广义Aumann语义 模糊概率 multi agent system belief logic Kripke semantics general Aumann semantics fuzzy probability
  • 相关文献

参考文献7

  • 1SU Kai-le,ABDUL S,LIN Han,et al. A modal logic for beliefs and pro attitudes[C]//Proceedings of the Twenty Second AAAI Conference on Artificial Intelligence. Vancouver :AAAI Press, 2007 : 496-501.
  • 2JIA Tao, ZHAO Wen, WANG Li-fu. PrSH : A belief description logic [C]//Agent and Multi-Agent Systems : Technologies and Applications ,First KES International Symposium. Berlin :Springer, 2007 : 31-41.
  • 3陈胜,赵林度,韩莹.区间值语义下的Agent信念模型[J].系统工程理论与实践,2005,25(5):118-122. 被引量:2
  • 4CAO Zi-ning. A complete probabilistic belief logic[J]//Lecture Notes in Computer Science,2007,4371:80-94.
  • 5曹子宁,石纯一.Probabilistic Belief Logic and Its Probabilistic Aumann Semantics[J].Journal of Computer Science & Technology,2003,18(5):571-579. 被引量:1
  • 6LIN Yun-guo,CHEN Xiao-yun,HU Shan-li. Interval-valued agent belief model based on new fuzzy set theory[C]// LEI Jing-sheng. Fourth International Conference on Fuzzy Systems and Knowledge Discovery. Washington DC:The IEEE Computer Society Press, 2007 : 116-120.
  • 7高庆狮.Zadeh模糊集合理论的缺陷及其改进:C*-模糊集合理论[J].北京科技大学学报,2005,27(5):513-519. 被引量:11

二级参考文献27

  • 1Hintikka J. Knowledge and Belief. Ithaca, NY: Cornell University Press, 1962.
  • 2Aumann R J. Agreeing to disagree. Ann. Stat, 1976,4(6): 1236-1239.
  • 3Fudenberg D, Tirole J. Game Theory. Cambridge, Massachusetts: The MIT Press, 1991.
  • 4Fagin R, Halpern J Y, Moses Y, Vardi M Y. Reasoning about Knowledge. Cambridge, Massachusetts: The MIT Press, 1995.
  • 5Fagin R, Halpern J Y. Reasoning about knowledge and probability. J ACM, 1994, 41(2): 340-367.
  • 6HMpern J Y, Moses Y. Knowledge and common knowledge in a distributed environment. J ACM, 1990, 37(3):549-587.
  • 7Levesque H J. A logic of implicit and explicit belief. AAAI-84, Austin, TX, pp.198-202.
  • 8Konolige K. A Deduction Model of Belief. Pitman Publishing, 1986.
  • 9Rao A S, Georgeff M P. Modeling rational agents within a BDI-axchitecture. In Principles of Knowledge Representation and Reasoning: Proc. The Second International Conference (KR'91), Allen J, Fikes R, Sandewall E (eds.), California: Morgan Kaufmann Publishers, 1991, pp.473-484.
  • 10Rao A S, Georgeff M P. An abstract architecture for rational agents. In Principles of Knowledge Representation and Reasoning: Proc. The Third International Conference (KR'92), Nebel B, Rich C, Swaxtout W (eds.), California: Morgan Kaufmann Publishers, 1992, pp.439-449.

共引文献11

同被引文献35

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部