期刊文献+

环F2+vF2上线性码的MacWilliams恒等式 被引量:8

MacWilliams identities of linear codes over ring F_2+vF_2
下载PDF
导出
摘要 定义了环F2+vF2上码字的李重量分布的概念,利用域F2上线性码和对偶码的重量分布的关系及gray映射,给出了该环上线性码与对偶码之间各种重量分布的MacWilliams恒等式。 Lee weight distribution of linear codes over F2 + vF2 was defined. By the relationship of linear codes and their dual codes over F2 and the gray map, the MacWilliams identities between the linear codes and their dual code were given.
出处 《计算机应用研究》 CSCD 北大核心 2008年第4期1134-1135,1174,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60673074) 教育部科学技术研究重点项目(107065)
关键词 线性码 对偶码 灰度映射 重量分布 linear codes dual code gray map weight distribution
  • 相关文献

参考文献10

  • 1MacWILLIAMS F J. A theorem on the distribution of weights in a systematic code [ J ]. Boll Syst Toch J, 1963, 42 (2) :79- 84.
  • 2WAN Z X. Quaternary codes[ M]. River Edge, NJ:World Scientific Pub, 1997.
  • 3朱士信.Z_k线性码的对称形式的MacMilliams恒等式[J].电子与信息学报,2003,25(7):901-906. 被引量:27
  • 4DOUGHERTY S T, GABORIT P,HARADA M, et al. TypeⅣ selfdual codes over rlngs[J]. IEEE Trans Inform Theory, 1999, 45 (7) :2345-2360.
  • 5KOICHI B, MASAAKI H. Optimal self-dual codes over F2 × F2 with respect to the hamming weight [ J]. IEEE Trans Inform Theory, 2004, 50(2) :356-358.
  • 6BACHOC C. Application of coding theory to the construction of modular lattic[J]. J Gombin, Theory Ser A,1997, 78(1) :92-119.
  • 7STEVEN T D, KEISUKE S. Maximum distance codes over rings order 4[J].IEEE Trans Inform Theory,2001,47( 1 ) :400-404.
  • 8朱士信 施敏加 吴波.环F2+vF2上的线性码及其对偶码的二元象.通信学报,2006,(9).
  • 9李超,冯克勤,胡卫群.一类性能好的线性码的构造[J].电子学报,2003,31(1):51-53. 被引量:3
  • 10胡万宝.Z_2~k-线性负循环码[J].纯粹数学与应用数学,2004,20(3):219-224. 被引量:2

二级参考文献27

  • 1[1]F J Macwilliams,N J A Sloane.The Theory of Error-Correcting Codes [M].Amesterdam,The Netherlands:North-Holland,1977.
  • 2[2]Chaoping Xing,San Ling,A class of linear codes with good parameters [J].IEEE.Trans.Inform Theory,2000,46(6):2184-2188.
  • 3[3]A Brouwer.Bounds on the minimum distance of linear code [EB].Available:http//www.win.tue,nl/~aeb/voorlincod.html.
  • 4[4]H Stichtenoth.Algebraic Function Fields and Codes [M].Berlin.Germany:Springer-Verlag,1993.
  • 5[5]Lidl R,Niederreiter H.Finite Fields [M].Addison Wesley Publishing Company,1983.
  • 6M. Harada, On the Hamming weight enumerators of self-dual codes over Zk[J], Finite Fields and Their Applications, 1999, 5(1), 26-34.
  • 7C. Carlet, Z2k-Linear codes [J], IEEE Trans. on Info. Theory, 1998, IT-44(4), 1543-1547.
  • 8S. Ling, P.Sold, Duadic over Z2k[J], IEEE Trans. on Info. Theory, 2001, IT-47(4), 1581-1589.
  • 9E. Rains, Bounds for self-dual codes over Z4[J], Finite Fields and Their Applications, 2000, 6(2),146-163.
  • 10P. Langevin, Duadic Z4-codes[J], Finite Field and Their Applications, 2000, 6(3), 309-326.

共引文献29

同被引文献57

  • 1唐永生,朱士信.Z_4线性码Lee重量的广义MacWilliams恒等式[J].中国科学技术大学学报,2010,40(9):932-935. 被引量:2
  • 2余海峰,朱士信.环F_2+uF_2上线性码及其对偶码的二元象[J].电子与信息学报,2006,28(11):2121-2123. 被引量:7
  • 3余海峰,朱士信.环F_2+uF_2上线性码及其对偶码的Mac Williams恒等式[J].中国科学技术大学学报,2006,36(12):1285-1288. 被引量:17
  • 4Dougherty S T,Gaborit P,Harada M,Sole P.Type II codes over F2+uF2[J].IEEE Trans Inform Theory,1999,45(1):32-45.
  • 5Bonnecaze A,Udaya P,Cyclic codes and self-dual codes over F2+uF2[J].IEEE Trans Inform Theory,1999,45(4):1250-1255.
  • 6F J MacWilliams. A theorem on the distribution of weights in a systematic code[ J]. Bell System Technical Journal, 1963,42 (2) :79 - 84.
  • 7Z X Wan. _Quaternary Codes[M] .River Edge. N J:World Sci- entific Pub, 1997.
  • 8A Ashikhmin. Generalized Hamming weights for Z4-linear codes[ A ]. Proceedings of IEEE International Symposium on Information Theory [ C ]. Trondheim Norway: IEEE Press, 1994. 306 - 306.
  • 9A Ashikhmin. On generalized Hamming weights for Galois ring linear codes[ J]. Designs, Codes and Cryptography, 1998, 14 (2) : 107 - 126.
  • 10K Shiromoto. A basic exact sequence for the Lee and Euclidean weights of linear codes over Z1[ J] .Linear Algebra and its Ap- plications, 1999,295(1 - 3) : 191 - 2000.

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部