期刊文献+

倒向重随机微分方程解的共单调定理

Comonotonic theorem for solution of backward doubly stochastic differential equation
下载PDF
导出
摘要 首先在比倒向随机微分方程更一般的倒向重随机微分方程中获得了一个新的比较定理。然后,受倒向随机微分方程共单调定律的启发,并利用获得的新的比较定理,首次得到了倒向重随机微分方程解z的共单调定理;其结果推广了许多已有的结果。 First, we obtain a new comparison theorem for backward doubly stochastic differential equation which is more popular than backward differential equation. Then inspired by the comonotomic theorem of backward stochastic differential equation, and by using the new comparison theorem,we obtain comonotonic theorem for solwtion z of backward doubly stochastic differential equation. The results can generalize some existing results.
出处 《河北科技大学学报》 CAS 2008年第1期60-62,86,共4页 Journal of Hebei University of Science and Technology
关键词 共单调定理 倒向重随机微分方程 比较定理 comonotonic theorem backward doubly stochastic differential equations comparison theorem
  • 相关文献

参考文献5

  • 1PARDOUX E, PENG Shi-ge. Adapted solution of a backward stochastic differential equation[J]. Systems Control Lett, 1990,14 : 51-61.
  • 2PENG Shi-ge. The backward stochastic differential equations and its application[J]. Adv Math,1997,26:97-112.
  • 3KAROUI N E, PENG Shi-ge, QUENEZ M C. Backward stochastic differential equations in finance[J]. Mathematical Finance, 1997,7 : 1-71.
  • 4CHEN Zeng-jing, KULPERGER R,WEI Gang. A eomonotonic theorem for BSDEs[J]. Stochastic Processes and Their Applications,2005, 115:41-54.
  • 5PARDOUX E,PENG Shi-ge. Backward doubly SDEs and systems of quasilinear SPDEs[J]. Probab Theory Related Fields, 1994,98:209- 227.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部