摘要
基于支持向量机,以全部和局部氨基酸序列的n肽组分、序列的亲疏水性分布等五种特征提取方法构成特征向量表示蛋白质序列,对六类细胞凋亡蛋白的亚细胞位置进行预测.结果表明,基于氨基酸二肽组成成分构成的特征向量集(以符号DIPE表示)的预测结果高于其它四种特征向量集的预测结果,在Jackknife检验下,总预测成功率达到了89.3%;与现有的方法比较,发现对于Mitochondrial类凋亡蛋白,支持向量机方法有更好的预测效果.
The six kinds of subcellular locations of apoptosis proteins are predicted by using support vector machine algorithm based on the n-peptide components of global and partial amino acid sequence as well as the distribution of hydropathy along the amino acid sequences. The predictive results for different parameters show that the overall prediction accuracy is better by using of the dipeptide composition (DIPE). In the jackknife test, the overall prediction accuracy reaches 89.3%. Compared with the other existing algorithms,the SVM algorithm can give the best prediction quality for the Mitochondrial subcellular locations of apoptosis proteins by the jackknife test.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期159-165,共7页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金(30560039)
内蒙古自然科学基金(200607010101)
内蒙古自治区优秀学科带头人计划项目资助
关键词
细胞凋亡蛋白
支持向量机
肽组分
亲疏水性分布
apoptosis protein
support vector machine
n-peptide components
hydropathy distribution