期刊文献+

基于支持向量机的多类凋亡蛋白亚细胞位置预测 被引量:1

Prediction of Multi-Class Subcellular Locations of Apoptosis Proteins Using Support Vector Machines
下载PDF
导出
摘要 基于支持向量机,以全部和局部氨基酸序列的n肽组分、序列的亲疏水性分布等五种特征提取方法构成特征向量表示蛋白质序列,对六类细胞凋亡蛋白的亚细胞位置进行预测.结果表明,基于氨基酸二肽组成成分构成的特征向量集(以符号DIPE表示)的预测结果高于其它四种特征向量集的预测结果,在Jackknife检验下,总预测成功率达到了89.3%;与现有的方法比较,发现对于Mitochondrial类凋亡蛋白,支持向量机方法有更好的预测效果. The six kinds of subcellular locations of apoptosis proteins are predicted by using support vector machine algorithm based on the n-peptide components of global and partial amino acid sequence as well as the distribution of hydropathy along the amino acid sequences. The predictive results for different parameters show that the overall prediction accuracy is better by using of the dipeptide composition (DIPE). In the jackknife test, the overall prediction accuracy reaches 89.3%. Compared with the other existing algorithms,the SVM algorithm can give the best prediction quality for the Mitochondrial subcellular locations of apoptosis proteins by the jackknife test.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期159-165,共7页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金(30560039) 内蒙古自然科学基金(200607010101) 内蒙古自治区优秀学科带头人计划项目资助
关键词 细胞凋亡蛋白 支持向量机 肽组分 亲疏水性分布 apoptosis protein support vector machine n-peptide components hydropathy distribution
  • 相关文献

参考文献23

  • 1Jacobson M D, Weil M, Raff M C. Programmed cell death in animal development [J]. Cell, 1997,88(3) :347-354.
  • 2Reed J C, Paternostro G. Postmitochondrial regulation of apoptosis during heart failure [J]. Proc. Natl. Acad. Sci. USA,1999,96(14) :7614-7616.
  • 3Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins [J]. Nucleic Acids Res. , 1998,26 (9) : 2 230-2 236.
  • 4Chou KC, Elrod D. Protein subcellular location prediction [J]. Protein Eng. , 1999,12(2) : 107-118.
  • 5Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. J Mol. Biol. , 2000,300(4) : 1005-1016.
  • 6Hua S J, Sun Z R. Support vector machine approach for protein subcellular localization prediction [J]. Bioinformatics, 2001,17 (8) : 721 - 728.
  • 7Nair R, Rost B. Mimicking cellular sorting improves prediction of subcellular localization [J]. J Mol. Biol. , 2005,348(1) :85-100.
  • 8Yu C S, Lin C J, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions [J]. Protein Sci. , 2004,13(5):1402-1406.
  • 9Matsuda S, Vert J P, Saigo H, et al. A novel representation of protein sequences for prediction of subcellular location using support vector machines [J]. Protein Sci. , 2005,14 (11 ) : 2 804-2 813.
  • 10Hoglund A, Donnes P, Blum T, et al. MultiLoc: prediction of protein subcellular localization using N- terminal targeting sequences, sequence motifs, and amino acid composition [J]. Bioinformatics,2006,22 (10) : 1158-1165.

二级参考文献54

  • 1李凤敏,李前忠.蛋白质亚细胞定位的识别[J].生物物理学报,2004,20(4):297-306. 被引量:11
  • 2黄静,石峰,周怀北.利用支持向量机和蛋白质非稳定性指标预测凋亡蛋白类型[J].生物信息学,2005,3(3):121-123. 被引量:3
  • 3Ahmad S, Gromiha MM. NETASA: neural network based prediction of solvent accessibility. Bioinformatics, 2002,18:819~824.
  • 4Hossein NM, Mehdi S, Shahriar A, Movahedi AAM. Prediction of protein surface accessibility with information theory.PROTEINS: Structure, Function and Genetics, 2001,42:452~459.
  • 5Vapnik V. The nature of statistical learning theory. New York: Springer, 1995.
  • 6Ward JJ, McGuffin LJ, Buxton BF, Jones DT. Secondary structure prediction with support vector machines. Bioinformatics, 2003,19:1650~1655.
  • 7Hua SJ, Sun ZR. Support vector machine approach for protein subcellular localization prediction. Bioinformatics,2001,17:721~728.
  • 8Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000,16:906~914.
  • 9Hobohm U, Sander C. Enlarged representation set of protein structure. Protein Sci, 1994,3:522~524.
  • 10Rost B and Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins: Structure, Function and Genetics, 1994,20:216~226.

共引文献19

同被引文献14

  • 1邹先霞,陈孝卫,许龙飞.基于关联规则与遗传算法的蛋白质二级结构预测[J].计算机工程与应用,2006,42(15):152-155. 被引量:7
  • 2徐建平,方慧生,相秉仁.基于常用得分矩阵的神经网络法预测蛋白质的二级结构[J].中国药科大学学报,2006,37(5):470-473. 被引量:3
  • 3Xin Liu. An amino acid substitution matrix for protein conformation identification[J]. Journal of Bioiformatics and Computational Biology, 2006,4 (3) : 769-782.
  • 4Altschul Stephen F, Lipman David J. Protein database searches for multiple alignments[J]. Proceedings of the National Academy of Sciences of the United States of Ame, 1990,87 (14) : 5509-5513.
  • 5MeLachlan A D. Tests for comparing related amino-acid sequences. Cytochromec and eytochrome c551[J]. J Mol Biol, 1971,61 (2) ;409-424.
  • 6Dayhoff M O, Schwartz R M, Oreutt B C. A model of evolutionary chage in proteins[J]. Atlas of Protein Sequenee and Strutcture, 1978,5 (3) : 345-352.
  • 7Steven Henikoff, Jorja G Henikoff. Amino acid substitution matrices from protein block[J]. Proceedings of the National Academy of Science of the United States of America, 1992,89(22):10915-10919.
  • 8Sean R Eddy. Where did the BLOSUM62 alignment score matrix come from[J]. Computational biology, 2004, 22(8) :1033 -1034.
  • 9Weijia Xu, Daniel P Miranker. A Metric Model of Amino Acid Substitution[M]. Bioinformatics Advance,2004, 10.
  • 10White S H, Jacobs R E. Statistical distribution of hydrophobic residues along the length of protein chains [J]. Biophysical Journal, 1990,57 : 911- 921.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部