期刊文献+

一类二阶中立型泛函微分方程周期解的个数估计

A Estimate for Number Multiple Periodic Solutions to a Class Neutral Differential Equations
原文传递
导出
摘要 本文通过变分原理和Z_2不变群指标,得出下述二阶中立型泛函微分方程(cx(t)+x(t-T)+cx(t-2T))"-x(t-T)+λf(t,x(t),x(t-T),x(t-2T))=0周期解个数的下界估计. By means of variational structure and Z2 group index theory, we obtain a estimate for number of multiple periodic solutions to second-order neutral functional differential equations (cx(t)+x(t-τ)+cx(t-2τ))"-x(t-τ)+λf(t,x(t),x(t-τ),x(t-2τ))=0.
出处 《应用数学学报》 CSCD 北大核心 2008年第1期35-43,共9页 Acta Mathematicae Applicatae Sinica
基金 湖南省博士后基金(2006FJ4249) 国家自然科学基金(10471155)资助项目
关键词 变分原理 Z2 不变群指标 中立型泛函微分方程 临界点 周期解 variational structure Z2 group index theory neutral functional differential equations critical points periodic solutions
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 2[2]Hale J K, Lunel S M V. Introduction to Functional Differential Equations[M]. Springer-Verlag, New York, 1993.
  • 3[3]Kaplan J L, Yorke J A. Ordinary differential equations which yield periodic solution of delay equations[J]. J Math Anal Appl, 1974,48:314-324.
  • 4[4]Nussbaum R D. Periodic solutions of some nonlinear autonomous functional differential equations[J]. J Diff Eqns, 1973, 14: 360-394.
  • 5[5]LI Ji-bin, HE xue-zhong. Multiple periodic solutions of differential delay equations created by asymptotically Hamiltonian systems[J]. Nonl Anal T M A, 1998, 31(1/2):45-54.
  • 6[6]GUO Zhi-ming, XU Yuan-tong, LIN Zhuang-peng. A new Zp index theory and its applications[A]. Peter W. Bates, Kening Lu & Daoyi Xu Proceedings of the International Conference on Differential Equations and Computational Simulations[C]. World Scientific Pub Co, Singapore, 2000. 111-114.
  • 7[7]XU Yuan-tong, GUO Zhi-ming. Applications of a Zp index theory to periodic solutions for a class of functional differential equations[J]. J Math Anal Appl, 2001, 257(1): 189-205.
  • 8[8]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Func Anal, 1973,14:349-381.
  • 9[9]Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[A]. CBMS Reg Conf Series in Math[C], Amer Math Soc, 1986, 65: 7-18.
  • 10[10]Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. Springer-Verlag, New York, 1989.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部