期刊文献+

用激光诱导可见光法测量电场影响下火焰碳烟颗粒浓度的分布变化 被引量:16

Electric Field Control of Soot Distribution in Flames Using Laser-induced Incandescence
下载PDF
导出
摘要 建立了一套基于激光诱导可见光法(laser-induced incandescence,LⅡ)及双色标定法的颗粒体积浓度定量诊断系统。该系统利用高能脉冲激光瞬间加热火焰中的纳米颗粒,使颗粒迅速升温到3500-4000K,从而诱发可见光,再利用双色法进行标定,确定光强与颗粒浓度的量化关系,从而计算出火焰中颗粒的绝对浓度以及二维分布。利用该系统测量电场影响下的碳烟颗粒浓度发现:外加电场可以降低火焰中碳烟颗粒的体积浓度,但在加压初期由于电场力作用而使浓度均有升高,±6kV后,离子风加强了物质间的混合,燃烧充分,浓度在小幅度升高后便持续剧烈下降,火焰高度也随之下降。热泳力瞬时采样法佐证了负电场对火焰碳烟颗粒浓度有更强的抑制作用,当电压为-15kV时,浓度降低至原浓度的10%。 A laser-induced incandescence (LⅡ) diagnostics system with 2-color calibration unit was set up. The system used a high-energy laser pulse to heat the soot particles in flame up to 3500-4000 K and induced the incandescence, then used the 2-color calibration unit to find the relationship between light intensity and absolute value of particle volume fraction, and finally get the 2-D image of soot particle volume fraction distribution. Based on this method, an optical experimental facility was set up to investigate the effect of electric fields on soot particle concentration in flames. With the presence of electric field, soot volume fraction will be decreased, but whatever it is negative or positive, the soot volume fraction will increase first because of the electric force below the value of ±6 kV. Ionic wind will take an important role to reduce the flame height and soot particles volume concentration after ±6 kV. Thermophoretic sampling particles diagnostics (TSPD) results show negative electric field is stronger than positive electric field in decreasing the soot volume concentration. When the voltage is -15 kV, the soot volume fraction is reduced to 10% of the value without electric field.
机构地区 清华大学
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第8期34-39,共6页 Proceedings of the CSEE
关键词 激光诱导可见光 纳米颗粒 碳烟 浓度测量 火焰 laser-induced incandescence nano-parficle soot concentration flame
  • 相关文献

参考文献17

  • 1Colbeck I, Appleby L, Hardman E J, et al. The optical properties and morphology of cloud-processed carbonaceous smoke[J]. Journal of Aerosol Science, 1990, 21(4): 527-538.
  • 2Bergstrom R W, Russell P B, Hignett P. On the wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the single scattering albedo[J]. Journal of Atrnospheric Science, 2002, 59(3): 567-577.
  • 3Chylek P, Lesins G B, Videen G, et al. Black carbon and absorption of solar radiation by clouds[J]. Journal of Geophysical Research, 1996, 101(18): 365-371.
  • 4刘小伟,徐明厚,于敦喜,俞云,高翔鹏,曹倩.燃煤过程中氧含量对可吸入颗粒物形成及排放特性影响的研究[J].中国电机工程学报,2006,26(15):46-50. 被引量:15
  • 5杜长明,严建华,李晓东,Cheron B.G.,尤孝方,池涌,陆胜勇,倪明江,岑可法.利用滑动弧放电脱除烟气中多环芳烃和碳黑颗粒[J].中国电机工程学报,2006,26(1):77-81. 被引量:24
  • 6Koshland C P. Impacts and control of air toxics from combustion [C]. 26th Symposium (international) on combustion, The Combustion Institute, Pittsburg, 1996: 2049-2065.
  • 7Weeks R W, Duley W W. Aerosol particle sizes from light emission during excitation by TEA CO2 laser pulses[J]. Journal of Applied Physics, 1974, 45(12): 4661-4662.
  • 8Eckbreth A C. Effects of laser-modulated particle incandescence on raman scattering diagnostics[J]. Appl. Phys., 1977, 48(11): 4473-4479.
  • 9Melton L A. Soot diagnostics based on laser heating[J]. Applied Optics, 1984, 23(13): 2201-2208.
  • 10Dasch C J. New soot diagnostics in flames based on laser vaporization of soot[J]. Process in Combustion Institute, 1985, 20(1). 1231-1237.

二级参考文献48

  • 1黄亚继,金保升,仲兆平,肖睿.痕量元素在气化产物中分布规律的研究[J].中国电机工程学报,2004,24(11):208-212. 被引量:19
  • 2赵延军,王式民,穆宁,潘琦,张学峰.光散射平均值法在线监测颗粒排放物浓度的研究[J].中国电机工程学报,2004,24(11):217-221. 被引量:11
  • 3潘卫国,曹绛敏.电站锅炉风粉流动参数在线测量技术[J].中国电机工程学报,2004,24(10):193-195. 被引量:12
  • 4于敦喜,徐明厚.煤焦破碎的模拟研究[J].中国电机工程学报,2005,25(9):90-93. 被引量:14
  • 5Dorai R,Hassouni K,Kusher M J.Interaction between soot particles and NOx during dielectric barrier discharge plasma remediation of simulated diesel exhaust[J].Journal of Applied Physics,2000,88(10):6066-6071.
  • 6Wayne W,Brubaker Jr,Ronald A H.OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-pdioxins and dibenzofurans[J].Journal of Physical and Chemistry A,1998,102(6):915-921.
  • 7Chmielewskia A G,Sun Y X,Lickib J,et al.NOx and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition[J].Radiation Physics and Chemistry,2003,67(5):555-560.
  • 8Weber R,Sakurai T,Hagenmaier H.Low temperature decomposition of PCDD/PCDF,chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J].Applied Catalysis B:Environmental,1999,20(4):249-256.
  • 9Chmielewski A G,Ostapczuk A,Zimek Z,et al.Reduction of VOCs in flue gas from coal combustion by electron beam treatment[J].Radiation Physics and Chemistry,2002,63(3-6):653-655.
  • 10Rober S,Genet F,Francke E,et al.Depollution processes in non-equilibrium plasma[C].Sixth European Conference on Thermal plasma Processes.Strasbourg,France,2000,803-810.

共引文献49

同被引文献183

引证文献16

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部