期刊文献+

以特征值为判据的异步发电机自激建压过程分析 被引量:6

Analysis of Voltage Build-up for Self-excited Induction Generator Based on Eigenvalues
下载PDF
导出
摘要 为研究自激电容对异步发电机空载暂态建压过程的影响并确定最小建压电容值,采用了以状态方程矩阵特征值计算为基础的分析方法。从自激异步发电机αβ坐标系下的等值电路出发,推导了异步发电机空载建压时的状态方程,通过对状态方程进行局部线性化,进而计算出线性状态矩阵的特征值。根据不同自激电容值所对应特征值实部的符号并应用系统稳定性理论,以此判断电容为该值时电压是否得以建立,空载暂态建压过程的仿真波形与实验波形较为一致,说明了分析方法的有效性。把特征值实部绝对值选为目标函数并结合一维优化方法计算了异步发电机空载最小建压电容值,此值与传统方法计算结果相吻合,进一步证实了分析方法的正确性。 An analysis approach based on eigenvalues of the state equation matrix is utilized to study the effect of the self-excited capacitances on the no-load transient voltage build-up and determine the minimum build-up capacitance of an induction generator. The state equations of the induction generator for no-load voltage build-up are deduced, which are resulted from the equivalent circuits in αβreference frame of the machine. With the state equations locally linearized, the eigenvalues of the linear state matrix are obtained. According to the real-part sign of the eigenvalues at different capacitances and the system stability theory, whether the voltage is built up or not is judged for the specific capacitance. The agreement between the simulation results and the experimental ones for no-load transient voltage build-up shows the validity of the presented analysis approach. The minimum capacitance for no-load voltage build-up is computed by one-dimensional optimization method with the absolute value of real-part of the eigenvalue selected as the object function, which corresponds to that obtained by the traditional method and further confirms the correctness of the presented method.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第8期111-116,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50747024)~~
关键词 异步发电机 自激电容 状态方程 特征值分析 最小建压电容 induction generator self-excited capacitance state equation eigenvalue analysis minimum capacitance for voltage build-up
  • 相关文献

参考文献18

  • 1Singh G K. Self-excited induction generator research--a survey [J]. Electric Power Systems Research, 2004, (69): 107-114.
  • 2Chan T F. Capacitance requirements of self-excited induction generators[J]. IEEE Trans on Energy Conversion, 1993, 8(2): 304-311.
  • 3Ojo O. Minimum airgap flux linkage requirement for self-excitation in stand-alone induction generators[J]. IEEE Trans on Energy Conversion, 1995, 10(3): 484-492.
  • 4孙建锋,焦连伟,吴俊玲,周双喜,陈寿孙.风电场发电机动态等值问题的研究[J].电网技术,2004,28(7):58-61. 被引量:90
  • 5Malik N H. Al-Bahrani A H. Influence of the terminal capacitor on the performance characteristics of a self-excited induction generator [J]. IEE Proceedings-Generation, Transactions and Distribution, 1990, 137(2): 168-173.
  • 6Grantham C, Sutanto D, Mismile B. Steady-state and transient analysis of self-excited induction generators[J]. IEE Proceedings-Electric Power Application, 1989, 136(2): 61-68.
  • 7Wang L, Su J Y. Dynamic performance of an isolated self-excited induction generator under various loading conditions[J]. IEEE Trans on Energy Conversion, 1999, 14(1): 93-100.
  • 8周济,罗应立,张建华,刘晓芳,蒋晓.基于MATLAB的次同步谐振的特征根分析[J].现代电力,1999,16(4):38-42. 被引量:4
  • 9Lee Y C, Wu C J. Damping of power system oscillations with output feedback and strip eigenvalue assignment[J]. IEEE Trans on Power Systems, 1995, 10(3): 1620-1626
  • 10Wang K W, Chung C Y, Tse C T, et al. Multimachine eigenvalue sensitivities of power system parameters[J]. IEEE Trans on power systems, 2000, 15(2): 741-747.

二级参考文献58

共引文献249

同被引文献54

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部