期刊文献+

Lp(μ,X)中的性质(U) 被引量:1

PROPERTY (U) IN L p(μ,X)
下载PDF
导出
摘要 证明了下面的两个结论:(1)Lp(μ,Y)是Lp(μ,X)的Chebyshev子空间的充要条件是Lq(μ,Y)是Lq(μ,X)的Chebyshev子空间(1≤p,q≤∞);(2)Lp(μ,Y)在Lp(μ,X)中具有性质(U)的充要条件是Lq(μ,Y)在Lq(μ,X)中有性质(U)(1≤p,q<∞).并且证明:若X自反,YX为闭子空间,则Y有性质(U)(或是Chebyshev子空间)可得出L1(μ,Y)在L1(μ,X)中有性质(U)(或是Chebyshev子空间) We get the following two main results:If Y is a closed subspace of Banach space X, then (1) L p(μ,Y) is the Chebyshev subspace of L p(μ,X) if and only if L q(μ,Y) is the Chebyshev subspace of L q(μ,X)(1≤ p,q≤∞.(2) L p(μ,Y) has property (U) in L p(μ,X) if and only if L q(μ,Y) has property (U) in L q(μ,X)(1≤p,q<∞) .And we also proved that if Y is a closed subspace of reflexive Banach space X and Y has property (U) (Chebyshev), then L p(μ,Y) has property (U) ( respectly, Chebyshev)in L p(μ,X) .
作者 石峰
机构地区 武汉大学数学系
出处 《武汉大学学报(自然科学版)》 CSCD 1997年第5期560-564,共5页 Journal of Wuhan University(Natural Science Edition)
基金 国家自然科学基金
关键词 巴拿赫空间 切比雪夫子空间 U性质 proximinal subspace, Chebyshev subspace,property (U)
  • 相关文献

同被引文献8

  • 1KHALIL R.Best Approximation in L^p(I,X)[J].Math.Proc.Cambridge Philos.Soc.,1983,94:277-279.
  • 2DEEB W,KHALIL R.Best Approximation in L(X,Y)[J].Math.Proc.Cambridge Philos.Soc.,1988,104:527-531.
  • 3KHALIL R,DEEB W.Best Approximation in L^p(I,X)(II)[J].J.Approx.Theory,1989,59:296-299.
  • 4LIGHT W A.Proximinality in Lp(S,Y)[J].Rocky Mountain J.Math.,1 989,19(1):251-259.
  • 5KHALIL R,SAIDI F.Best Approximation in L1(I,X)[J].Proc.Amer.Math.Soc.,1995,123(1):183-190.
  • 6SAIDI F.On the Smoothness of the Metric Projection and Its Application to Proximinality in L^p(S,X)[J].J.Approx.Theory,1995,83:205-219.
  • 7MENDOZA J.Proximality in Lp(μ,X)[J].J.Approx.Theory,1998,93:3 31-343.
  • 8YE Xin-tai,XU Xiu-bin,LUO Xian-fa.Best Approximation in Lp(Ω,X)[J].Commu.Appli.Nonlinear,2005,12(4):29-36.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部