摘要
证明了下面的两个结论:(1)Lp(μ,Y)是Lp(μ,X)的Chebyshev子空间的充要条件是Lq(μ,Y)是Lq(μ,X)的Chebyshev子空间(1≤p,q≤∞);(2)Lp(μ,Y)在Lp(μ,X)中具有性质(U)的充要条件是Lq(μ,Y)在Lq(μ,X)中有性质(U)(1≤p,q<∞).并且证明:若X自反,YX为闭子空间,则Y有性质(U)(或是Chebyshev子空间)可得出L1(μ,Y)在L1(μ,X)中有性质(U)(或是Chebyshev子空间)
We get the following two main results:If Y is a closed subspace of Banach space X, then (1) L p(μ,Y) is the Chebyshev subspace of L p(μ,X) if and only if L q(μ,Y) is the Chebyshev subspace of L q(μ,X)(1≤ p,q≤∞.(2) L p(μ,Y) has property (U) in L p(μ,X) if and only if L q(μ,Y) has property (U) in L q(μ,X)(1≤p,q<∞) .And we also proved that if Y is a closed subspace of reflexive Banach space X and Y has property (U) (Chebyshev), then L p(μ,Y) has property (U) ( respectly, Chebyshev)in L p(μ,X) .
出处
《武汉大学学报(自然科学版)》
CSCD
1997年第5期560-564,共5页
Journal of Wuhan University(Natural Science Edition)
基金
国家自然科学基金