期刊文献+

听觉功能MRI研究的实验设计 被引量:6

Experiment design of auditory functional MRI
下载PDF
导出
摘要 目的探讨听觉fMRI研究的有效数据采集方式。方法对13例健康年轻受试者分别采用纯音及调幅音两种听觉刺激条件,刺激分别采用组块和事件相关设计进行听觉呈现,以比较连续及稀疏两种采集方式下听觉皮层的fMRI响应,运用SPM2软件进行数据分析和脑功能区定位,并分析两种不同实验数据采集方式下听觉皮层激活的差异。结果调幅声较纯音更易激发听觉皮层的激活;两种刺激条件下,稀疏采集时听觉皮层的fMRI响应明显多于连续采集,比较听觉皮层各区,以初级听觉皮层fMRI响应为著。结论调幅音是听觉fMRI研究中的合适刺激;稀疏采集方式有助于克服环境噪声的负面影响,结合物理衰减方法,可实现听觉功能的fMRI研究。 Objective To probe the available data acquisition in auditory functional MRI. Methods Functional MR images were acquired in 13 healthy young subjects. The tasks were pure tone and amplitude modulation tone. Block and event-related design were both applied in all subjects. SPM2 was used to process data and localize functional areas of brain. The differences between the two experiments design were analyzed. Results Amplitude modulation tone generated greater activation in auditory cortex than pure tone. Under the two kinds of stimulation, activation of auditory cortex in sparse acquisition was notably greater than that in continuous imaging, especially in primary auditory cortex. Conclusion Amplitude modulation tone can be used as a kind of suitable task stimulation in auditory functional MRI. Sparse temporal sampling in auditory functional MRI can overcome adverse effect of ambient noise. Auditory functional MRI can be effectively obtained by combining sparse imaging and physical attenuation method.
出处 《中国医学影像技术》 CSCD 北大核心 2008年第3期358-362,共5页 Chinese Journal of Medical Imaging Technology
基金 东南大学科技基金(KJ0790300) 东南大学优秀博士学位论文基金(YBJJ0729)资助
关键词 磁共振成像 纯音 调幅音 听觉皮层 Magnetic resonance imaging Pure tone Amplitude modulation Auditory cortex
  • 相关文献

参考文献12

  • 1耿左军,张云亭,张权,李威,张敬.感音神经性聋人和正常人纯音刺激脑功能区BOLD-fMRI研究[J].中华耳科学杂志,2005,3(3):165-169. 被引量:9
  • 2夏爽,祁吉,尹建忠,薛永刚.单侧感音神经性耳聋病人听觉中枢的fMRI研究[J].中国医学影像技术,2005,21(9):1312-1316. 被引量:16
  • 3Penhune VB, Zatorre RJ, MacDonald JD, et al. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex, 1996,6(5) :661-672.
  • 4Langers DR, Backes WH, van Dijk P. Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage, 2007,34(1) : 264-273.
  • 5Brechmann A, Baumgart F, Scheich H. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol, 2002,87(1) :423-433.
  • 6Bernal B, Altman NR. Auditory Functional MR Imaging. AJR Am J Roentgenol, 2001,176(4) : 1009-1015.
  • 7Di Salle F, Esposito F, Scarabino T, et al. fMRI of the auditory system: understanding the neural basis of auditory gestalt. Magn Reson Imaging, 2003,21(10) : 1213-1224.
  • 8Hall DA, Haggard MP, Akeroyd MA, et al. "Sparse" temporal sampling in auditory fMRI. Hum Brain Mapp, 1999, 7(3) : 213- 223.
  • 9De vlin JT, Raley J, Tunbridge E, et al. Functional asymmetry for auditory processing in hunman primary auditory cortex. J Neurosci, 2003,23(37) : 11516-11522.
  • 10Hart HC, Palmer AR, Hall DA. Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 2003,13(7) :774-781.

二级参考文献26

  • 1李心天.中国人的左右利手分布[J].心理学报,1983,15(3):268-276. 被引量:196
  • 2[1]Hall DA, Summerfield AQ, Haggard MP, et al. Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J Acoust Soc Am, 2001, 109: 1559-1570.
  • 3[2]Jancke L, Shah NJ, Posse S, et al. Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia, 1998, 36: 875-883.
  • 4[3]Bilecen D, Seifritz E, Scheffler K, et al. Amplitopicity of the humanauditory cortex: an fMRI study. Neuroimage 2002, 17:710-718.
  • 5[4]Charles Leclerc, Dave Saint-Amour, Marc E. Lavoie, et al. Brain functional reorganization in early blind humans revealed by auditory eventrelated potentials. Neuroreport, 2000, 11: 545-550.
  • 6[5]Eva M. Finney, Brett A. Clementz, et al. Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport,2003, 14: 1425-1427.
  • 7[6]Rauschecker JP. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci, 1995, 18: 36-43.
  • 8[7]Sur M, Angelucci A, Sharma J, et al. Rewiring cortex: the role of patterned activity in development and plasticity of neocortical circuits. J Neurobiol, 1999, 41: 33-43.
  • 9[8]Weeks R, Horwitz B, Aziz-Sultan A et al. A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci, 2000, 20: 2664-2672.
  • 10[9]Bushara KO, Weeks RA, Ishii K, et al. Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci, 1999, 2: 759-766.

共引文献17

同被引文献74

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部