摘要
设R(n,d)表示由全体恰含d个环点的n(n≥3)阶本原无向图所构成的集合,F(n,d,k)为R(n,d)中图的第k重上广义本原指数的最大值,1≤d≤n,2≤k≤n-1.本文给出了F(n,d,k)的具体形式,并证明了R(n,d)的第k重上广义本原指数集为E(n,d,k)={1,2,…,F(n,d,k)}.
Let R(n,d) be a set of primitive symmetric digraphs of order n with exact d vertices having ring. F(n,d,k) be the largest value of the k th upper generalized exponents of the R(n,d) . In this paper we give the expression of F(n,d,k) , and prove the set of k th upper generalized exponents of the R(n,d) is E(n,d,k)={1,2,… ,F(n,d,k) } .
出处
《数学进展》
CSCD
北大核心
1997年第5期409-416,共8页
Advances in Mathematics(China)
基金
国家自然科学基金