摘要
研究了超实数域上两种有用的拓扑—Q-拓扑和S-拓扑.证明了以下结果:空间(R,Q)是完全不连通的;R的Q-紧子集只有有限集;R中的每一个银河是(R,S)的一个连通分支;R中的每一个具有有限长度的区间(不必是闭的)都是S-紧的,同时也纠正了《Math.Japonica》上一篇论文中关于R上的Q-拓扑的性质的一些错误。
Two kinds of useful topologies, i.e. Q -topology and S -topology on the field of hyperreal numbers are studied. The following results are proved: The space ( tR, Q) is totally disconnected; only finite subsets of * R are Q -compact; Every galaxy of * R is a connected component of ( * R, S) ; Every interval in * R (not necessarily closed) with finite length is S -compact. Some mistakes about the properties of Q -topology in another paper on Math. Japonica are corrected as well.
出处
《数学进展》
CSCD
北大核心
1997年第5期435-439,共5页
Advances in Mathematics(China)
关键词
超实数域
Q-拓扑
S-拓扑
可数概括原理
拓扑结构
hyperreal number field
Q -topology
S -topology
standard part mapping
countably comprehensive principle