期刊文献+

全非负阵的Hadamard-Fischer不等式的几个改进 被引量:5

Some Improvement of the Hadamard-Fischer Inequality for Totally Nonnegative Matrices
下载PDF
导出
摘要 本文讨论了全非负阵与其逆矩阵的关系,改进了关于全非负矩阵的Hadamard-Fischer不等式的几个近期结果. In this paper, we discussed reationship between totally nonnegative matrices and its inverse matrix. Further, we obtained some improvement of the Hadamard-Fischer inequality for totally nonnegative Matrices. They improved present some cesults.
作者 刘建洲
机构地区 湘潭大学数学系
出处 《应用数学》 CSCD 1997年第4期105-110,共6页 Mathematica Applicata
关键词 全非负阵 行列式 H-F不等式 矩阵 Totally nonnegative matrix Determinant Hadamard-Fischer inequality
  • 相关文献

同被引文献26

  • 1庹清,黎奇升.关于M矩阵Hadamard不等式的进一步改进[J].南京大学学报(数学半年刊),2005,22(1):143-152. 被引量:1
  • 2张晓东,杨尚骏.关于HADAMARD不等式的注记[J].应用数学学报,1997,20(2):269-274. 被引量:14
  • 3Huang L P.The Improvement of Fisher-Hadamard Inequality[J].Quarterly J.math,1994,(3):13-18.
  • 4Horn,A.Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix[J].Amer.J.math,1954,76 (3):620-630.
  • 5Ouellette,D.V.Schur Complements and Statistics[J].Lin.Alg.Appl,1981,36:187-296.
  • 6Minc,H.Nonnegative Matrices[M].New York:John Wiley and Sons,1988.
  • 7Zhang X and Yang S. An Improvement of Hadamard's Inequality for Totally Nonnegative Matrices[J]. SIAM J Matrix Anal. Appl, 1993, 14(3): 705-711.
  • 8Huang L P. The Improvement of Fischer's Inequality and Hadamard's Inequality[J]. Quaxtery J.Math, 1994, 3: 13-18.
  • 9Berman A and Plemmens R J. Nonnegative Matrices in the Mathematical Science[M]. New York,Academic press. 1979.
  • 10Johnson C R. Inverse M-Matrices[J]. Linear Algebra Appl, 1982, 47: 195-216.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部