期刊文献+

基于 MPEG 国际标准压缩视频流的镜头切分算法 被引量:7

Approach for shot segmentation using MPEG compressed data
原文传递
导出
摘要 镜头切分是实现对动态视频基于内容检索的第一步,以检测出来的镜头作为基本单元,可以进一步对视频内容进行分析和建立索引。从实用角度看,目前越来越多的动态视频资料都是以压缩形式存储和传输,所以,研究基于压缩视频流的算法更有实际意义。本文旨在提出一种基于MPEG国际标准压缩视频流的镜头自动切分算法,通过利用MPEG数据流中已有的信息,如离散余弦变换(DCT)系数和运动向量,只进行最小程度的解码,来检测镜头间的边界,从而实现镜头切分。针对实际视频流中镜头切换方式的复杂性,本文提出了三个算法分别处理不同情况,并将这三个算法以树形分类器的方式组织在一起,形成一个系统。通过对十段不同类型的MPEG-Ⅰ压缩视频节目进行镜头切分实验,取得了90%以上的正确率。 Segmenting video sequences into individual shots is one of the fundamental processes in content based video retrieval. We can further parse and index the video content based on the basic unit of shot. Up to now, more and more video materials are stored and transmitted in the compression form, so it is practical to study the shot segmentation algorithms based on compressed video data. This paper presents an integrated approach to detect the boundaries between shots by using the discret cosine transform (DCT) coefficients and motion vectors encoded in MPEG compressed data. Only minimal decoding is needed for the algorithm. Considering the complicated situation in real world video sequences, three algorithms are developed to deal with different situations, and we also present a tree like classifier to organize the three algorithms together to form a system. By testing ten video sequences for various types, we get over 90% correct percentage.
作者 祁卫 钟玉琢
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 1997年第9期50-54,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目
关键词 镜头切分 MPEG 视频流 多媒体 压缩视频流 shot segmentation content based retrieval tree like classifier discret cosine transform motion vector MPEG 
  • 相关文献

参考文献3

  • 1Yeo B L,Proc IEEE Int conf on multimedia computing and systems,1995年
  • 2Meng J H,SPIE.2419,1995年
  • 3Zhang H J,Multimedia Tools Appl,1995年,1期,89页

同被引文献78

  • 1徐建华.图象处理与分析[M].北京:科学出版社,1992..
  • 2-.运动图象及其伴音通用编码国际标准-MPEG-1[M].南京大学出版社,1995..
  • 3Zhang H.J., Chien Y.L., Smoliar S.W.. Video parsing and browsing using compressed data. Multimedia Tools and Applications, 1995,(1): 89~113
  • 4Shahraray B.. Scene change detection and content-based sampling of video sequences. In: Proceedings of IS&T/SPIE Symposium on Digital Video Compression: Algorithm and Technologies. Bellingham, Washington D.C.: SPIE Press, 1995, 2419: 2~13
  • 5Zhang H.J. et al.. Video parsing, retrieval and browsing: An integrated and content- based solution. In: Proceedings of ACM Multimedia'95, San Francisco, 1995, 15~24
  • 6Nagasaka A., Tanaka Y.. Automatic video indexing and full-video search for object appearances. In: Knuth E., Wegner L.M. eds. IFIP Proceedings of Visual Database Systems. Amsterdam, The Netherlands: North-Holland, 1992, 113~127
  • 7Srinivasan M.V., Venkatesh S.,Hosie R.. Qualitative estimation of camera motion parameters from video sequence. Pattern Recognition, 1997, 30(4): 593~606
  • 8Ueda H., Miyatake T., Yoshizawa S. IMPACT. An interactive natural-motion picture dedicated multimedia authoring system. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Reaching Through Technology. New York: ACM Press, 1991, 343~350
  • 9Toller M.S., Lewis, Nixon M.S.. Video segmentation using combined cues. In: Proceedings of the SPIE, San Jose, CA, 1997, 3312: 414~425
  • 10Alattar A.M.. Detecting and compressing dissolve regions in video sequences with a DVI multimedia image compression algorithm. In: Proceedings of IEEE International Symposium Circuits and Systems (ISCAS), Chicago, 1993, 1: 13~16

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部