Existence of Weakly Efficient Solutions in Vector Optimization
Existence of Weakly Efficient Solutions in Vector Optimization
摘要
In this paper, we present an existence result for weak efficient solution for the vector optimization problem. The result is stated for invex strongly compactly Lipschitz functions.
In this paper, we present an existence result for weak efficient solution for the vector optimization problem. The result is stated for invex strongly compactly Lipschitz functions.
基金
Ministério de Educacióny Ciencia de Espaa,Grant No.MTM2007-63432
参考文献14
-
1Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming. Bulletin of the Australian Mathematical Society, 38, 177-189 (1988)
-
2Chankong, V., Haimes, Y. Y.: Multiobjective decision making: theory and methodology. North-Holland Series in Science and Engineering, 8, North-Holland Publishing. Co., New York, 1983
-
3Chen, G. Y., Craven, B. D.: Existence and continuity for vector optimization. Journal of Optimization Theory and Applications, 81, 459-468 (1994)
-
4Clarke, F. H.: Optimization and nonsmooth analysis, Willey, New York, 1983
-
5El-Abdouni, B., Thibault, T.: Lagrange multipliers for Pareto nonsmooth programming in Banach spaces. Optimization, 26, 277-285 (1992)
-
6Kazmi, K. R.: Some remarks on vector optimization problems. Journal of Optimization Theory and Applications, 96(1), 133-138 (1998)
-
7Thibault, L.: On generalized differentiels and subdifferentiels of lipschitz vector-valued functions. Nonlinear Analysis, 6, 1037-1053 (1982)
-
8Santos, L. B., Osuna-Gomez, R., Rojaz-Medar, M. A., Rufian-Lizana, A.: Preinvex functions and weak efficient solutions for some vectorial optimization problems in Banach Spaces. Computers and Mathematics with Applications. 48, 885-895 (2004)
-
9Thibault, L.: Subdifferentials of compactly Lipschitzian vector-valued functions. Ann. Math. Pure Appl., 125, 157-192 (1980)
-
10Phuong, T., Sach, P. H., Yen, N. D.: Strict level sets and invexity of a locally Lipschitz function. Journal of Optimization Theory and Applications, 87, 579-594 (1995)
-
1GONG Xun hua (Department of Mathematics, Nanchang University, Nanchang 330047, China).ON VECTOR OPTIMIZATION WHEN THE ORDERING CONE HAS AN EMPTY INTERIOR[J].Systems Science and Mathematical Sciences,2000,13(1):17-22. 被引量:1
-
2任红,蒋凉.物理摆极值的最优化计算[J].技术物理教学,2008,16(1):27-29.
-
3曾祥金.非线性最优化问题的曲线拟合法[J].武汉水利电力学院学报,1989,22(5):33-42.
-
4邓乃扬.矩阵秩m修正的特征值问题[J].北京大学学报(自然科学版),1992,28(1):59-61.
-
5Ji-cheng Li Wei Li.The Optimal Preconditioner of Strictly Diagonally Dominant Z-matrix[J].Acta Mathematicae Applicatae Sinica,2008,24(2):305-312. 被引量:3
-
6金炳尧.最优化计算中的若干新技术[J].科技通报,2000,16(2):118-124. 被引量:4
-
7QU He-mei,XUE Zhen-xia.Optimality of Vector Optimization Involving Generalized Type-I Functions in Banach[J].Chinese Quarterly Journal of Mathematics,2009,24(4):543-550. 被引量:1
-
8WANG Qi-liu.ε-strongly Efficient Solutions for Vector Optimization with Set-valued Maps[J].Chinese Quarterly Journal of Mathematics,2010,25(1):104-109. 被引量:9
-
9盛保怀,刘三阳.THE OPTIMALITY CONDITIONS OF NONCONVEXSET-VALUED VECTOR OPTIMIZATION[J].Acta Mathematica Scientia,2002,22(1):47-55. 被引量:2
-
10余丽.Strict Efficiency in Vector Optimization with Ic-cone-convexlike Set-valued Functions[J].Chinese Quarterly Journal of Mathematics,2011,26(4):505-510.