期刊文献+

Existence of Weakly Efficient Solutions in Vector Optimization

Existence of Weakly Efficient Solutions in Vector Optimization
原文传递
导出
摘要 In this paper, we present an existence result for weak efficient solution for the vector optimization problem. The result is stated for invex strongly compactly Lipschitz functions. In this paper, we present an existence result for weak efficient solution for the vector optimization problem. The result is stated for invex strongly compactly Lipschitz functions.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期599-606,共8页 数学学报(英文版)
基金 Ministério de Educacióny Ciencia de Espaa,Grant No.MTM2007-63432
关键词 vector optimization weak efficiency generalized convexity Clarke generalized gradient vector optimization, weak efficiency, generalized convexity, Clarke generalized gradient
  • 相关文献

参考文献14

  • 1Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming. Bulletin of the Australian Mathematical Society, 38, 177-189 (1988)
  • 2Chankong, V., Haimes, Y. Y.: Multiobjective decision making: theory and methodology. North-Holland Series in Science and Engineering, 8, North-Holland Publishing. Co., New York, 1983
  • 3Chen, G. Y., Craven, B. D.: Existence and continuity for vector optimization. Journal of Optimization Theory and Applications, 81, 459-468 (1994)
  • 4Clarke, F. H.: Optimization and nonsmooth analysis, Willey, New York, 1983
  • 5El-Abdouni, B., Thibault, T.: Lagrange multipliers for Pareto nonsmooth programming in Banach spaces. Optimization, 26, 277-285 (1992)
  • 6Kazmi, K. R.: Some remarks on vector optimization problems. Journal of Optimization Theory and Applications, 96(1), 133-138 (1998)
  • 7Thibault, L.: On generalized differentiels and subdifferentiels of lipschitz vector-valued functions. Nonlinear Analysis, 6, 1037-1053 (1982)
  • 8Santos, L. B., Osuna-Gomez, R., Rojaz-Medar, M. A., Rufian-Lizana, A.: Preinvex functions and weak efficient solutions for some vectorial optimization problems in Banach Spaces. Computers and Mathematics with Applications. 48, 885-895 (2004)
  • 9Thibault, L.: Subdifferentials of compactly Lipschitzian vector-valued functions. Ann. Math. Pure Appl., 125, 157-192 (1980)
  • 10Phuong, T., Sach, P. H., Yen, N. D.: Strict level sets and invexity of a locally Lipschitz function. Journal of Optimization Theory and Applications, 87, 579-594 (1995)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部