期刊文献+

Analytic Invariant Curves for a Planar Mapping

Analytic Invariant Curves for a Planar Mapping
原文传递
导出
摘要 This paper is concerned with the existence of analytic invariant curves for a planar mapping. By constructing a convergent power series solution of an auxiliary equation, analytic solutions of the original equation are obtained. In this paper, we discuss not only the general case, but also the critical cases as well, in particular, the case where β is a unit root is discussed. This paper is concerned with the existence of analytic invariant curves for a planar mapping. By constructing a convergent power series solution of an auxiliary equation, analytic solutions of the original equation are obtained. In this paper, we discuss not only the general case, but also the critical cases as well, in particular, the case where β is a unit root is discussed.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期623-630,共8页 数学学报(英文版)
关键词 planar mapping invariant curves analytic solution Majorant series planar mapping, invariant curves, analytic solution, Majorant series
  • 相关文献

参考文献16

  • 1Moser, J.: On invariant curves of area-preserving maps of an annulus. Nachr. Akad. Wiss. Gottingen, 1, (1962)
  • 2Kuczma, M.: Functional Equations in a Single Variable, Polish Scientific, Warszawa, 1968
  • 3Diamond, P. M.: Analytic invariants of mappings of two variables. J. Math. Anal. Appl., 27, 601-608 (1969)
  • 4Kuczma, M., Choczewski, B., Ger, R.:Iterative Functional Equations, Encycl. Math. Appl., 32, Cambridge University Press, Cambridge, 1990
  • 5Jarczyk, W.: On continuous solutions of the equation of invariant curves, Constantin Caratheodory; An International Tribute, Vol. 1, World Scientific, Teaneck, 1991, 527-542
  • 6Ng, C. T., Zhang, W.: Invariant curves for a planar mapping. J. Differ. Equations Appl., 3, 147-168 (1997)
  • 7Si, J. G., Zhang, W. N.: Analytic solutions of a functional equation for invariant curves. J. Math. Anal. Appl., 259, 83-93 (2001)
  • 8Si, J. G., Zhaag, W. N.: Analytic solutions of a nonlinear iterative equation near neutral fixed point and poles. J. Math. Anal. Appl., 284, 373-388 (2003)
  • 9Si, J. G., Zhang, W. N.: Analytic solutions of a second-order non-autonomous iterative functional differential equation. J. Math. Anal. Appl., 306, 398-412 (2005)
  • 10Petropoulou, E. N., Siafarikas, P. D.- Existence and Uniqueness of solutions in H1(Δ) of a general class of non-linear functional equations. J. Math. Anal. Appl., 279, 451-462 (2003)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部