摘要
设G是有限群,φ(G)是G的极大且正规子群的交。讨论了φ(G)的一些性质,并得到了一个正规π-补定理。设φ(G)是有限群G的极大且正规子群的交,则φ(G)是G的所有正规非生成元集合;设π是素数集,H是G的幂零Halπ-子群。则G有正规π-补当且仅当H∩φ(G)=Φ(H)。其中Φ(H)为H的Fratini子群。
Let G be a finite group and φ(G) the intersection of the maximum and normal subgroups of G .Some properties of φ(G) is discussed and a theorem of normal π complements is obtained. Theorem 1 φ(G) is the set of all normal non generators of G . Theorem 2 Let π be a set of primes and H a nilpotent Hall π subgroup.Then H has a normal π complement if and only if H∩φ(H)=Φ(H) ,where Φ(H) is the Frattini subgroup of H .
关键词
有限群
极大子群
正规子群
正规π-补
finite groups
normal π complements
maximum subgroups
normal subgroups