摘要
Laminar premixed stoichiometric methane/hydrogen/oxygen/argon flames were investigated with tun- able synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spec- trometry techniques. The methane/hydrogen fuel blends with hydrogen volumetric fraction of 0, 20%, 40%, 60% and 80% were studied. All observed flame species, including stable intermediates and radi- cals in the flames, were detected by measuring photoionization mass spectra and photoionization effi- ciency (PIE) spectra. Mole fraction profiles of major species and intermediates were derived by scan- ning burner at some selected photon energies near ionization thresholds. The influence of hydrogen addition on mole fraction of major species and intermediates was analyzed. The results show that the major species mole fraction of CO, CO2 and CH4 decreases with the increase of hydrogen fraction. The mole fraction of intermediates measured in this experiment decreases remarkably with the increase of hydrogen fraction. This would be due to the increase of H and OH radicals by hydrogen addition and the high diffusivity and activity of H radical promoting the chemical reaction. In addition, the increase of H/C ratio with the increase of hydrogen fraction also leads to the decrease of the mole fraction of car- bon-related intermediates and contributes to the decrease of unburned and incomplete combustion products.
Laminar premixed stoichiometric methane/hydrogen/oxygen/argon flames were investigated with tunable synchrotron vacuum ultraviolet (VUV) photoionizaUon and molecular-beam sampling mass spectrometry techniques. The methane/hydrogen fuel blends with hydrogen volumetric fraction of 0, 20%, 40%, 60% and 80% were studied. All observed flame species, including stable intermediates and radicals in the flames, were detected by measuring photoionization mass spectra and photoionization efficiency (PIE) spectra. Mole fraction profiles of major species and intermediates were derived by scanning burner at some selected photon energies near ionization thresholds. The influence of hydrogen addition on mole fraction of major species and intermediates was analyzed. The results show that the major species mole fraction of CO, CO2 and CH4 decreases with the increase of hydrogen fraction. The mole fraction of intermediates measured in this experiment decreases remarkably with the increase of hydrogen fraction. This would be due to the increase of H and OH radicals by hydrogen addition and the high diffusivity and activity of H radical promoting the chemical reaction. In addition, the increase of H/C ratio with the increase of hydrogen fraction also leads to the decrease of the mole fraction of carbon-related intermediates and contributes to the decrease of unburned and incomplete combustion products.
基金
the National Basic Research Program of China (Grant No. 2007CB210006)
the National Natural Science Foundation of China (Grant Nos. 50636040 and 50521604)
关键词
甲烷
氢
混合火焰
同步加速器
MBMS
methane, hydrogen, premixed laminar flame, synchrotron photoionization, MBMS