期刊文献+

无界域电磁场问题的有限元-本征函数展开结合解法 被引量:2

Hybrid Finite Element/Eigenfunction Expansion Method for Unbounded Electromagnetic Field Problems
下载PDF
导出
摘要 基于区域分裂的思想,通过引入一虚拟圆形边界,将整个无界域划分为圆内、外两部分.圆内有限区域采用通常的有限元法离散,而将整个圆外无限区域看作一个“无限大”的单元,采用以本征函数展开的Fourier级数作为插值函数的离散方法.这种处理方法能够很好地把有限元法的求解区域推广至无穷远,实现了它在无界域电磁场数值分析中的应用,从而形成了一种新型的解法.文中以无界域中典型电磁场问题为例证,说明了有限元-本征函数展开结合解法简单易行、方便直观,具有实用价值.此外,场的离散化表示比较精确,保留了有限元法系数阵的特点,且具有变量较少和计算效率高等优点. Based on the idea of region division, a novel technique known as the “Hybrid Finite Element/Eigenfunction Method” is developed for treating unbounded field problems in this paper. The general principle of the technique is first to introduce a fictitious circular boundary to enclose the structures with sources and inhomogeneous dielectrics.In the interior of the circular boundary, the finite element method is used to formulate the fields, whereas in the exterior region, the field is presented by an expansion of eigenfunction (in Fourier series). A macro element is employed for the interior which requires only potential continuity at the boundary nodes with the interior finite elements, so as to extend finite element method to unbounded field problems. The method has been applied to a variety of unbounded electromagnetic field problems, and shown to be accurate and powerful. The numerical examples of some canonical open region problems are included to demonstrate the accuracy, efficiency and capability of this method. The new hybrid scheme combining an analytical solution with the finite element method offers several advantages: (i) symmetric, sparse and banded matrices; (ii) much fewer elements and nodes for the same level of accuracy; (iii) easy means of calculating the external field, once the Fouriers coefficients are determined and the potential solution is obtained.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 1997年第11期117-123,共7页 Journal of Xi'an Jiaotong University
基金 国家教委博士点专项基金
关键词 区域分裂 有限元法 本征函数展开 电磁场 unbounded electromagnetic field region division finite element eigenfunction expansion
  • 相关文献

参考文献5

二级参考文献11

  • 1周乐柱,Chin J Electron
  • 2周乐柱,IEEE Trans MTT
  • 3Wang J S,IEEE Trans MAG,1992年,27卷,557页
  • 4Fan Desun,电子科学学刊,1992年,14卷,4期,436页
  • 5Lee J F,IEEE Trans MTT,1991年,39卷,1262页
  • 6Xu Shanjia,电子学报,1990年,18卷,6期,75页
  • 7Cu C C,IEEE Trans MTT,1986年,34卷,1140页
  • 8Chen C H,IEEE Trans MTT,1980年,28卷,8期,878页
  • 9樊德森,IEEE Trans AP,1993年,41卷,3期
  • 10樊德森,王沅勋.波导结和波导-喇叭辐射器有限元分析——导波数值边界条件及其应用[J].电子科学学刊,1992,14(4):436-440. 被引量:1

共引文献5

同被引文献10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部