摘要
利用一致Gronwal引理和Sobolev空间的嵌入性质,首先证明了具有色散的反应扩散方程在Dirichlet或Neumann边界条件下的整体吸引子的存在性.其次,在Dirichlet边界条件下证明了当σ>0时,具有色散和不变区域的反应扩散方程组的整体吸引子的存在性,这里σ将由定理2给出;
By using the uniform Gronwalls lemma and the embedding properties of Sobolev spaces, the author first proves the existence of the global attractor for R D equation with dispersion, and then gives the existence of the global attractor for R D system with dispersion and invariant regions under Dirichlet boundary condition. And finally under Neumann boundary condition, the author also presents the existence of the global attractor for R D system with dispersion and compact invariant regions.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
1997年第10期115-119,126,共6页
Journal of Xi'an Jiaotong University
关键词
整体吸引子
SOBOLEV空间
反应扩散方组
色散
global attractor absorbing set semi group uniform Gronwalls lemma Sobolev space