摘要
从知识发现和数据挖掘的角度,利用粗糙集和BP神经网络的理论和方法,建立了基于粗糙集和BP神经网络相结合的供应链绩效评价模型。并结合一个供应链绩效评价实例,首先对其基于平衡记分卡的指标体系进行了约简,然后将约简的评价指标输入到BP神经网络中进行智能训练,最后把评价的样本输入到训练好的BP网络中,得出供应链绩效的评价值、评价结果与实际结果基本一致。
This paper sets up a supply chain performance evaluation model based on rough sets and BP neural network from knowledge discovery and data mining perspective. It gives a supply chain performance evaluation exampie, firstly reduces its index based on the balanced scorecard system, and then inputs the reduction index to BP neural network for intelligent training. Finally, it inputs the evaluated sample to the trained BP network and gets supply chain performance evaluation value. The evaluating result is matched with the actual result.
出处
《软科学》
CSSCI
2008年第3期9-13,共5页
Soft Science
基金
国家自然科学基金项目(70272034)
西安理工大学创新基金项目(210518)
关键词
粗糙集
BP神经网络
约简
分辨矩阵
供应链绩效评价模型
rough sets
BP neural network
reduction
discernable matrix
supply chain performance evaluation model