摘要
电化学传感器在检测矿井一氧化碳含量时,容易受到矿井中甲烷气体的影响。为了解决这个问题,将催化传感器与电化学传感器构成一体,利用两个传感器的输出信号,经过BP神经网络的训练,得到了一个分析一氧化碳的信息融合数学模型。实验表明,利用研究的信息融合信号处理方法,可以提高一氧化碳含量检测的可靠性。
The electrochemical sensor is easy to be disturbed by methane gas in measuring CO of mine. In order to eliminate the effect of methane gas, a catalysis sensor and electrochemical sensor are used together. The output signals of two sensors are trained by BP neural network to get the mathematical model of information fusion for the analysis of CO. The experiment shows that the information fusion of two sensors could improve the accuracy of measurement of CO.
出处
《计量学报》
EI
CSCD
北大核心
2007年第4期388-390,共3页
Acta Metrologica Sinica
基金
国家自然科学基金(50374067)