期刊文献+

变利率下的保险商偿债率模型研究 被引量:6

STUDY ON THE SOLVENCY RATIO MODEL UNDER FLUCTUATED INTEREST RATE
下载PDF
导出
摘要 在有金融困境成本的情况下,建立了带有变利率的保险商偿债率(SR)模型.采用Girsanov定理进行测度变换,利用变利率下的Black-Scholes期权定价公式,计算出了保险商终期收益的现值,并且讨论了保险商关于金融困境成本、金融困境障碍等参数的风险管理敏感性. This paper constructs the insurer' s solvency ratio model under fluctuated interest rate in the presence of finanial distress costs. By Girsanov' s theorem and the Black-Scholes pricing formula under fluetuated interest rate, the maximization of shareholders' value is discussed, and the insurer' s risk management sensitivities with respeet to parameters of financial distress cost,financial distress barrier are investigated.
出处 《经济数学》 2007年第4期358-362,共5页 Journal of Quantitative Economics
基金 教育部科学技术重点研究项目(205073) 教育部博士点基金(20060255006) 安徽省高校自然科学基金(2005kj209)
关键词 变利率 偿债率 BLACK-SCHOLES公式 Girsmaov定理 金融困境成本 Huctuated interest rate, solvency Patio, Black-Scholes formula, girsanov' s theorem, financial distress cost.
  • 相关文献

参考文献10

  • 1Diamond D.W. Debt maturity structure and liquidity risk[J]. Quaterly Journal of Economics, 1991,106:709- 737.
  • 2Froot K., Scharfstein D. and Stein J. Risk management: Coordinating corporate investments and financing policies[J]. Journal of Finance, 1993,5:1629 - 1658.
  • 3Opler T. ,Titman S. Financial distress and corporate performance [J]. Journal of Finance, 1994,49:1015 - 1040.
  • 4Briys E. ,De Varenne F. Valuing risky fixed rate debt: an extension [J]. Journal of Finanical and Quantitative Analysis, 1997,32: 239 - 248.
  • 5Krvavych Y. Insurer Risk Management and Optimal Reinsurance [D]. Ph. D.Thesis, University of New South Wales, Australia, January 2005,. www. actuary. unse. edu. au.
  • 6Krvavych Y., Sherries M. Enhancing insurer value through reinsurance optimization [J]. Insurance:Mathematics and Economics .2006,38:495 - 517.
  • 7薛红.随机利率情形下的多维Black-Scholes模型[J].工程数学学报,2005,22(4):645-652. 被引量:12
  • 8Musiela M. ,Rutkowski M. Martingale Methods in Financial Modeling [M]. New York:Springer, 1997.
  • 9Karatzas I., Shreve S. Brownian Motion and Stochastiv Calculus [ M]. New York:Springer, 1988.
  • 10Rogers L. C. G., Williams D. Diffusions, Markov processes and Martingales, Volume 2: It o Calculus [ M ]. Cambridge, UK: Combridge University Press, 2000.

二级参考文献7

共引文献11

同被引文献16

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 3Diamond D W. Debt maturity structure and liquidity risk [J]. Quaterly Journal of Economics, 1991, 106:709 -737.
  • 4Opler T, Titman S. Financial distress and corporate performance [J]. Journal of Finance, 1994, 49: 1015-1040.
  • 5Briys E, De Varenne F. Valuing risky fixed rate debt: an extension [J]. Journal of Financial and Quantitative Analysis, 1997, 32:239 -248.
  • 6Krvavych Y. Insurer risk management and optimal reinsurance [D]. Australia: University of New South Wales, 2005.
  • 7Krvavych Y, Sherries M. Enhancing insurer value through reinsurance optimization [J]. Insur- ance.. Mathematics and Economics, 2006, 38: 495-517.
  • 8Shreve S. Stochastic Calculus for finance II [M]. New York: Springer, 2004.
  • 9何声武;汪嘉冈;严加安.半鞅与随机分析[M]北京:科学出版社,1995.
  • 10费为银.European Option Pricing under a Class of Fractional Market[J].Journal of Donghua University(English Edition),2010,27(6):732-737. 被引量:4

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部