期刊文献+

基于总间隔与代价差异算法的支持向量机

Research on SVM Based on Total Margin and Different Cost Algorithm
下载PDF
导出
摘要 针对支持向量机在实际应用中存在的最优分类超平面的倾斜问题和推广误差界的问题,引入了总间隔与代价差异算法,对标准的支持向量机算法进行了改进.同时,针对线性和非线性两种情况,给出了详细的公式推导过程,并得出结论:基于总间隔与代价差异算法的支持向量机的性能优于标准的支持向量机. In respect of the skew of the optimal separating hyperplane and the generalization error bound that exist in the practical application of support vector machine, this paper introduces the total margin algorithm and different cost algorithm, which improves the standard support vector machine. Meanwhile, a detailed derivation of the formula in both linear and nonlinear cases is showed in the paper. And a conclusion can be made that the support vector machine based on total margin and different cost algorithm provides good performance, comparing with the standard support vector machine.
出处 《中南民族大学学报(自然科学版)》 CAS 2007年第4期84-86,112,共4页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 中南民族大学自然科学基金资助项目(YZY060006)
关键词 支持向量机 最优分类超平面 总间隔 代价差异 support vector machine optimal separating hyperplane total margin different cost
  • 相关文献

参考文献5

  • 1Vapnik V. Statistical learning theory [M]. New York: Wiley, 1998.
  • 2Rehan A, Stephen K, Nathalie J. Applying support vector machines to imbalanced datasets [C]//IEEE. Proceeding of 15th European Conference on Machine Learning(ECML), Pisa: IEEE, 2004: 39-50.
  • 3Lin Y, Lee Y, Wahba G. Support vector machines for classification in nonstandard situations[J]. Machine Learning, 2002,46: 191-202.
  • 4Yoon M, Yun Y, Nakayama H. A role of total margin in support vector machines[C]//IEEE. Proceeding of the International Joint Conference on Neural Networks, Japan: IEEE, 2003:2 049-2 053.
  • 5Chi W, Dai G, Zhang L. Face recognition based on independent Gabor features and support vector machine [C]//IEEE. Proceeding of 5th World Congress on Intelligent Control and Automation, Hangzhou:IEEE, 2004:4 030-4 033.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部