期刊文献+

基于功率谱密度的盲信号分离 被引量:3

Blind signals separation based on the power spectral density
下载PDF
导出
摘要 提出一种新的基于功率谱密度的盲信号分离方法。该方法在传感器数与源数关系不明确情况下,且源信号相互独立时,直接通过混合信号功率谱密度函数比值求解混合阵,并通过混合阵判定观测信号是完备混合、超定混合还是欠定混合,由此进一步分离信号。理论分析、仿真数据证明了算法的有效性。同时还仿真了噪声对分离性能的影响。 A new methods for blind signals separation is proposed. In the case that the relations between the number of sensors and sources are unknown and the source signals are independent, via the ratio of the power spectral density of the observation signals, the mixture matrix is obtained. According to the matrix, it can be assured that the observation signal belongs to one of three mixtures, namely the complete mixture, over-determined mixture and under-determined mixture, and the sources can be separated from the observation signals. The effectivity of the proposed method is verified by theory analysis, simulation data. The influence of noise on separation performance is also simulated.
作者 李宁 史铁林
出处 《振动工程学报》 EI CSCD 北大核心 2007年第3期255-259,共5页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50675076) 国家重点基础研究发展计划资助项目(2005CB724100)
关键词 盲信号分离 功率谱密度 欠定混合 超定混合 blind signal separation power spectral density (PSD) under-determined mixture over-determined mixture
  • 相关文献

参考文献4

  • 1Comon P.Blind identification and source separation in 2×3 under-determined mixtures[J].IEEE Trans.on Signal Processing,2004,52 (1):11-22.
  • 2Li Y,Cichocki A,Amari S I.Sparse component analysis for blind source separation with less sensors than sources[A].Fourth International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003)[C].Japan,2003:89-94.
  • 3Shi Z W,Tang H W,Liu W Y,et al.Blind source separation of more sources than mixtures using generalized exponential mixture models[J].Neurocomputing,2004,(61):461-469.
  • 4Aghabozorgi M R,Doost-Hoseini A M.Blind separation of jointly stationary correlated sources[J].Signal Processing,2004,(84):317-325.

同被引文献25

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部